DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants.


Journal

NPJ genomic medicine
ISSN: 2056-7944
Titre abrégé: NPJ Genom Med
Pays: England
ID NLM: 101685193

Informations de publication

Date de publication:
26 Feb 2024
Historique:
received: 10 08 2023
accepted: 26 01 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 26 2 2024
Statut: epublish

Résumé

The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.

Identifiants

pubmed: 38409211
doi: 10.1038/s41525-024-00397-w
pii: 10.1038/s41525-024-00397-w
doi:

Types de publication

Journal Article

Langues

eng

Pagination

16

Subventions

Organisme : Israel Science Foundation (ISF)
ID : 231/21
Organisme : Israel Science Foundation (ISF)
ID : 2039/20

Informations de copyright

© 2024. The Author(s).

Références

Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980 (2014).
doi: 10.1093/nar/gkt1113 pubmed: 24234437
Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839 (2020).
doi: 10.1038/s41573-020-0084-6 pubmed: 33077937 pmcid: 7721651
Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).
Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302 (2021).
doi: 10.1038/s41586-021-03609-w pubmed: 34079130 pmcid: 8266759
Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).
doi: 10.1038/s41586-021-03534-y pubmed: 34012082
Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med 24, 1519–1525 (2018).
doi: 10.1038/s41591-018-0209-1 pubmed: 30297904
Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).
doi: 10.1038/s41586-020-03086-7 pubmed: 33408413 pmcid: 7872200
Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).
doi: 10.1146/annurev.biochem.71.110601.135501 pubmed: 12045112
Savva, Y. A., Rieder, L. E. & Reenan, R. A. The ADAR protein family. Genome Biol. 13, 252 (2012).
doi: 10.1186/gb-2012-13-12-252 pubmed: 23273215 pmcid: 3580408
Porath, H. T., Knisbacher, B. A., Eisenberg, E. & Levanon, E. Y. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 18, 1–12 (2017).
doi: 10.1186/s13059-017-1315-y
Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).
doi: 10.1038/s41592-018-0017-z pubmed: 29967493 pmcid: 6322650
Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. C. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).
doi: 10.1073/pnas.1306243110 pubmed: 24108353 pmcid: 3831439
Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 1–10 https://doi.org/10.1038/s41587-021-01105-0 (2022).
Sinnamon, J. R. et al. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc. Natl Acad. Sci. USA 114, E9395–E9402 (2017).
doi: 10.1073/pnas.1715320114 pubmed: 29078406 pmcid: 5676935
Wettengel, J., Reautschnig, P., Geisler, S., Kahle, P. J. & Stafforst, T. Harnessing human ADAR2 for RNA repair—recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797 (2017).
pubmed: 27907896
Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).
doi: 10.1038/s41592-019-0323-0 pubmed: 30737497 pmcid: 6395520
Monian, P. et al. Endogenous ADAR-mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides. Nat. Biotechnol. 1–10 https://doi.org/10.1038/s41587-022-01225-1 (2022).
Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 1–10 https://doi.org/10.1038/s41587-021-01180-3 (2022).
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
doi: 10.1038/nature17946 pubmed: 27096365 pmcid: 4873371
Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).
doi: 10.1038/s41586-019-1314-0 pubmed: 31181567
Buchumenski, I. et al. Global quantification exposes abundant low-level off-target activity by base editors. Genome Res. 31, 2354–2361 (2021).
doi: 10.1101/gr.275770.121 pubmed: 34667118 pmcid: 8647836
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862 (2016).
doi: 10.1093/nar/gkv1222 pubmed: 26582918
Kent, W. J. BLAT—the BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250 pmcid: 187518
Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).
doi: 10.1126/science.adg7492 pubmed: 37733863
Shah, S. A., Erdmann, S., Mojica, F. J. M. & Garrett, R. A. Protospacer recognition motifs. RNA Biol. 10, 891–899 (2013).
doi: 10.4161/rna.23764 pubmed: 23403393 pmcid: 3737346
Kent, W. J. et al. The Human Genome Browser at UCSC. Genome Res. 12, 996–1006 (2002).
doi: 10.1101/gr.229102 pubmed: 12045153 pmcid: 186604
Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).
doi: 10.1186/s13059-016-1012-2 pubmed: 27380939 pmcid: 4934014
Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acid Res. 46, W242–W245 (2018).
doi: 10.1093/nar/gky354 pubmed: 29762716 pmcid: 6030908
Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).
doi: 10.1073/pnas.89.22.10915 pubmed: 1438297 pmcid: 50453
Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
doi: 10.1093/nar/gkg509 pubmed: 12824425 pmcid: 168916
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
doi: 10.1038/s41586-020-2308-7 pubmed: 32461654 pmcid: 7334197
Apgar, T. L. & Sanders, C. R. Compendium of causative genes and their encoded proteins for common monogenic disorders. Protein Sci. 31, 75–91 (2022).
doi: 10.1002/pro.4183 pubmed: 34515378
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
doi: 10.1038/nature24644 pubmed: 29160308 pmcid: 5726555
Lavrov, A. V., Varenikov, G. G. & Skoblov, M. Y. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genom. 13, 80 (2020).
doi: 10.1186/s12920-020-00735-8
Li, B. et al. Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening. Mol. Ther. 31, 1167–1176 (2023).
doi: 10.1016/j.ymthe.2023.01.028 pubmed: 36733252
Jeong, Y. K., Song, B. & Bae, S. Current status and challenges of DNA base editing tools. Mol. Ther. 28, 1938–1952 (2020).
doi: 10.1016/j.ymthe.2020.07.021 pubmed: 32763143 pmcid: 7474268
Anna, A. & Monika, G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J. Appl. Genet. 59, 253–268 (2018).
doi: 10.1007/s13353-018-0444-7 pubmed: 29680930 pmcid: 6060985
Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).
doi: 10.1038/s41587-019-0013-6 pubmed: 30692694
Doherty, E. E. et al. ADAR activation by inducing a syn conformation at guanosine adjacent to an editing site. Nucleic Acids Res. 50, 10857–10868 (2022).
doi: 10.1093/nar/gkac897 pubmed: 36243986 pmcid: 9638939
Cho, S. I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776.e12 (2022).
doi: 10.1016/j.cell.2022.03.039 pubmed: 35472302

Auteurs

Ariel Dadush (A)

Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.

Rona Merdler-Rabinowicz (R)

Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

David Gorelik (D)

Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.

Ariel Feiglin (A)

Skip Therapeutics Ltd, 2 Ilan Ramon St, Ness Ziona, Israel.

Ilana Buchumenski (I)

Skip Therapeutics Ltd, 2 Ilan Ramon St, Ness Ziona, Israel.

Lipika R Pal (LR)

Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Shay Ben-Aroya (S)

Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.

Eytan Ruppin (E)

Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Erez Y Levanon (EY)

Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. Erez.Levanon@biu.ac.il.
The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel. Erez.Levanon@biu.ac.il.

Classifications MeSH