Estimation of footprints of the canine stifle ligaments using deformable shape templates of bones.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
26 Feb 2024
Historique:
received: 14 11 2023
accepted: 20 02 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 26 2 2024
Statut: epublish

Résumé

Knowledge regarding the ligament footprints in the canine stifle is essential for biomechanical modeling of the joint and patient-specific surgical planning for anatomical ligament reconstruction. The present study aimed to establish and evaluate deformable shape templates (DSTs) of the femur and tibia with footprints of the cruciate and collateral ligaments embedded for the noninvasive estimation of ligament footprint positions. To this end, a data set of computed tomography (CT)-derived surface models of the femur and tibia were established and used to build statistical shape models (SSMs). The contours of the stifle ligaments were obtained from CT scans of 27 hindlimb specimens with radio-opaque markings on the ligament footprints. The DST, constructed by embedding averaged footprint contours into the SSM, was used to estimate subject-specific ligament footprints in a leave-one-out cross-validation framework. The DST predictions were compared with those derived from radio-opaque-marked footprints. The results showed that the averaged Euclidean distances between the estimated and reference footprint centroids were less than 1.2 mm for the cruciate ligaments and 2.0 mm for the collateral ligaments. The DST appeared to provide a feasible alternative approach for noninvasively estimating the footprints of the stifle ligaments in vivo.

Identifiants

pubmed: 38409316
doi: 10.1038/s41598-024-55116-3
pii: 10.1038/s41598-024-55116-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4639

Subventions

Organisme : National Science and Technology Council of Taiwan, R.O.C.
ID : 111-2313-B-002 -017 -MY3
Organisme : National Science and Technology Council of Taiwan, R.O.C.
ID : 111-2313-B-002 -017 -MY3
Organisme : National Science and Technology Council of Taiwan, R.O.C.
ID : 111-2313-B-002 -017 -MY3

Informations de copyright

© 2024. The Author(s).

Références

Carpenter, D. H. Jr. & Cooper, R. C. Mini review of canine stifle joint anatomy. Anat. Histol. Embryol. 29, 321–329. https://doi.org/10.1046/j.1439-0264.2000.00289.x (2000).
doi: 10.1046/j.1439-0264.2000.00289.x pubmed: 11199475
Tobias, K. M. & Johnston, S. A. Veterinary surgery: small animal-E-BOOK: 2-volume set (Elsevier, 2013).
Meise, H. F., Lüpke, M., Seifert, H. & Harms, O. Development of a three-dimensional computer model of the canine pelvic limb including cruciate ligaments to simulate movement. Res. Vet. Sci. 136, 430–443 (2021).
doi: 10.1016/j.rvsc.2021.03.015 pubmed: 33812286
Brown, N. P., Bertocci, G. E. & Marcellin-Little, D. J. Development of a canine stifle computer model to evaluate cranial cruciate ligament deficiency. J. Mech. Med. Biol. 13, 1350043 (2013).
doi: 10.1142/S0219519413500437
Eliya, Y., Nawar, K., Rothrauff, B. B., Lesniak, B. P. & Musahl, V. Anatomical anterior cruciate ligament reconstruction (ACLR) results in fewer rates of atraumatic graft rupture, and higher rates of rotatory knee stability: A meta-analysis. Journal of ISAKOS 5, 359–370 (2020).
doi: 10.1136/jisakos-2020-000476
Bolia, A. & Böttcher, P. Arthroscopic assisted femoral tunnel drilling for the intra-articular anatomic cranial cruciate ligament reconstruction in dogs. Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere 43, 299–308 (2015).
doi: 10.15654/TPK-141128 pubmed: 26333277
Muir, P. Advances in the canine cranial cruciate ligament (Wiley, Hoboken, 2018).
Bicer, E. K., Magnussen, R. A. & Neyret, P. Intra-articular landmarks for anterior cruciate ligament reconstructions: A review. Int. J. Clin. Rheumatol. 5, 677 (2010).
doi: 10.2217/ijr.10.97
Bernard, M., Hertel, P., Hornung, H. & Cierpinski, T. Femoral insertion of the ACL. Radiographic quadrant method. Am. J. Knee Surg. 10, 14–21 (1997).
pubmed: 9051173
Stäubli, H. U. & Rauschning, W. Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg. Sports Traumatol. Arthrosc. 2, 138–146. https://doi.org/10.1007/bf01467915 (1994).
doi: 10.1007/bf01467915 pubmed: 7584195
Araujo, P., van Eck, C. F., Torabi, M. & Fu, F. H. How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 21, 1495–1501 (2013).
doi: 10.1007/s00167-012-2153-9 pubmed: 22893266
Rachmat, H. et al. Generating finite element models of the knee: How accurately can we determine ligament attachment sites from MRI scans?. Med. Eng. Phys. 36, 701–707 (2014).
doi: 10.1016/j.medengphy.2014.02.016 pubmed: 24629625
Ascani, D., Mazzà, C., De Lollis, A., Bernardoni, M. & Viceconti, M. A procedure to estimate the origins and the insertions of the knee ligaments from computed tomography images. J. Biomech. 48, 233–237. https://doi.org/10.1016/j.jbiomech.2014.11.041 (2015).
doi: 10.1016/j.jbiomech.2014.11.041 pubmed: 25512017
Pillet, H. et al. Femur, tibia and fibula bone templates to estimate subject-specific knee ligament attachment site locations. J. Biomech. 49, 3523–3528. https://doi.org/10.1016/j.jbiomech.2016.09.027 (2016).
doi: 10.1016/j.jbiomech.2016.09.027 pubmed: 27717547
Bolia, A., Winkels, P. & Böttcher, P. Radiographic location of the femoral footprint of the cranial cruciate ligament in dogs. Tierarztl Prax Ausg K Kleintiere Heimtiere 43, 23–30. https://doi.org/10.15654/tpk-140357 (2015).
doi: 10.15654/tpk-140357 pubmed: 25609136
Hsu, W.-R., Lin, C.-C., Sun, C.-Y. & Wu, C.-H. Ex vivo biomechanical evaluation of extracapsular stabilization with quasi-isometric points in canine cranial cruciate ligament-deficient stifles. BMC Vet. Res. 19, 93 (2023).
doi: 10.1186/s12917-023-03656-7 pubmed: 37488563 pmcid: 10364379
Lin, C. C., Lu, M., Wang, S. N. & Wu, C. H. In vivo three-dimensional isometry analysis of suture attachment sites for extracapsular suture stabilization of the canine stifle. Vet. Rec. 190, e560. https://doi.org/10.1002/vetr.560 (2022).
doi: 10.1002/vetr.560 pubmed: 34125444
Lin, C.-C., Chang, C.-L., Lu, M., Lu, T.-W. & Wu, C.-H. Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion. BMC Vet. Res. 14, 1–11 (2018).
doi: 10.1186/s12917-018-1714-7
Wu, C. H. et al. Evaluation of ranges of motion of a new constrained acetabular prosthesis for canine total hip replacement. Biomed. Eng. Online 12, 116. https://doi.org/10.1186/1475-925x-12-116 (2013).
doi: 10.1186/1475-925x-12-116 pubmed: 24207109 pmcid: 3834103
Lu, H.-Y. et al. Three-dimensional subject-specific knee shape reconstruction with asynchronous fluoroscopy images using statistical shape modeling. Front. Bioeng. Biotechnol. 9, 736420 (2021).
doi: 10.3389/fbioe.2021.736420 pubmed: 34746102 pmcid: 8564181
Myronenko, A. & Song, X. Point set registration: Coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262–2275 (2010).
doi: 10.1109/TPAMI.2010.46 pubmed: 20975122
Jorge, N. & Stephen, J. W. Numerical optimization (Spinger, 2006).
Akhundov, R. et al. Is subject-specific musculoskeletal modelling worth the extra effort or is generic modelling worth the shortcut?. PloS one 17, e0262936 (2022).
doi: 10.1371/journal.pone.0262936 pubmed: 35077508 pmcid: 8789151
Zheng, L., Harner, C. D. & Zhang, X. The morphometry of soft tissue insertions on the tibial plateau: Data acquisition and statistical shape analysis. PLoS One 9, e96515 (2014).
doi: 10.1371/journal.pone.0096515 pubmed: 24788908 pmcid: 4008582
Illés, T. & Somoskeöy, S. The EOS™ imaging system and its uses in daily orthopaedic practice. Int. Orthop. 36, 1325–1331. https://doi.org/10.1007/s00264-012-1512-y (2012).
doi: 10.1007/s00264-012-1512-y pubmed: 22371113 pmcid: 3385897
Tanegashima, K. et al. Functional anatomy of the craniomedial and caudolateral bundles of the cranial cruciate ligament in beagle dogs. Vet. Comp. Orthop. Traumatol. 32, 182–191. https://doi.org/10.1055/s-0039-1678711 (2019).
doi: 10.1055/s-0039-1678711 pubmed: 30873569

Auteurs

Yu-Ying Lin (YY)

Institute of Veterinary Clinical Sciences, National Taiwan University, Taipei, Taiwan.

Cheng-Chung Lin (CC)

Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan.

Ching-Ho Wu (CH)

Institute of Veterinary Clinical Sciences, National Taiwan University, Taipei, Taiwan. chinghowu@ntu.edu.tw.

Classifications MeSH