Estimation of footprints of the canine stifle ligaments using deformable shape templates of bones.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
26 Feb 2024
26 Feb 2024
Historique:
received:
14
11
2023
accepted:
20
02
2024
medline:
27
2
2024
pubmed:
27
2
2024
entrez:
26
2
2024
Statut:
epublish
Résumé
Knowledge regarding the ligament footprints in the canine stifle is essential for biomechanical modeling of the joint and patient-specific surgical planning for anatomical ligament reconstruction. The present study aimed to establish and evaluate deformable shape templates (DSTs) of the femur and tibia with footprints of the cruciate and collateral ligaments embedded for the noninvasive estimation of ligament footprint positions. To this end, a data set of computed tomography (CT)-derived surface models of the femur and tibia were established and used to build statistical shape models (SSMs). The contours of the stifle ligaments were obtained from CT scans of 27 hindlimb specimens with radio-opaque markings on the ligament footprints. The DST, constructed by embedding averaged footprint contours into the SSM, was used to estimate subject-specific ligament footprints in a leave-one-out cross-validation framework. The DST predictions were compared with those derived from radio-opaque-marked footprints. The results showed that the averaged Euclidean distances between the estimated and reference footprint centroids were less than 1.2 mm for the cruciate ligaments and 2.0 mm for the collateral ligaments. The DST appeared to provide a feasible alternative approach for noninvasively estimating the footprints of the stifle ligaments in vivo.
Identifiants
pubmed: 38409316
doi: 10.1038/s41598-024-55116-3
pii: 10.1038/s41598-024-55116-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4639Subventions
Organisme : National Science and Technology Council of Taiwan, R.O.C.
ID : 111-2313-B-002 -017 -MY3
Organisme : National Science and Technology Council of Taiwan, R.O.C.
ID : 111-2313-B-002 -017 -MY3
Organisme : National Science and Technology Council of Taiwan, R.O.C.
ID : 111-2313-B-002 -017 -MY3
Informations de copyright
© 2024. The Author(s).
Références
Carpenter, D. H. Jr. & Cooper, R. C. Mini review of canine stifle joint anatomy. Anat. Histol. Embryol. 29, 321–329. https://doi.org/10.1046/j.1439-0264.2000.00289.x (2000).
doi: 10.1046/j.1439-0264.2000.00289.x
pubmed: 11199475
Tobias, K. M. & Johnston, S. A. Veterinary surgery: small animal-E-BOOK: 2-volume set (Elsevier, 2013).
Meise, H. F., Lüpke, M., Seifert, H. & Harms, O. Development of a three-dimensional computer model of the canine pelvic limb including cruciate ligaments to simulate movement. Res. Vet. Sci. 136, 430–443 (2021).
doi: 10.1016/j.rvsc.2021.03.015
pubmed: 33812286
Brown, N. P., Bertocci, G. E. & Marcellin-Little, D. J. Development of a canine stifle computer model to evaluate cranial cruciate ligament deficiency. J. Mech. Med. Biol. 13, 1350043 (2013).
doi: 10.1142/S0219519413500437
Eliya, Y., Nawar, K., Rothrauff, B. B., Lesniak, B. P. & Musahl, V. Anatomical anterior cruciate ligament reconstruction (ACLR) results in fewer rates of atraumatic graft rupture, and higher rates of rotatory knee stability: A meta-analysis. Journal of ISAKOS 5, 359–370 (2020).
doi: 10.1136/jisakos-2020-000476
Bolia, A. & Böttcher, P. Arthroscopic assisted femoral tunnel drilling for the intra-articular anatomic cranial cruciate ligament reconstruction in dogs. Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere 43, 299–308 (2015).
doi: 10.15654/TPK-141128
pubmed: 26333277
Muir, P. Advances in the canine cranial cruciate ligament (Wiley, Hoboken, 2018).
Bicer, E. K., Magnussen, R. A. & Neyret, P. Intra-articular landmarks for anterior cruciate ligament reconstructions: A review. Int. J. Clin. Rheumatol. 5, 677 (2010).
doi: 10.2217/ijr.10.97
Bernard, M., Hertel, P., Hornung, H. & Cierpinski, T. Femoral insertion of the ACL. Radiographic quadrant method. Am. J. Knee Surg. 10, 14–21 (1997).
pubmed: 9051173
Stäubli, H. U. & Rauschning, W. Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg. Sports Traumatol. Arthrosc. 2, 138–146. https://doi.org/10.1007/bf01467915 (1994).
doi: 10.1007/bf01467915
pubmed: 7584195
Araujo, P., van Eck, C. F., Torabi, M. & Fu, F. H. How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 21, 1495–1501 (2013).
doi: 10.1007/s00167-012-2153-9
pubmed: 22893266
Rachmat, H. et al. Generating finite element models of the knee: How accurately can we determine ligament attachment sites from MRI scans?. Med. Eng. Phys. 36, 701–707 (2014).
doi: 10.1016/j.medengphy.2014.02.016
pubmed: 24629625
Ascani, D., Mazzà, C., De Lollis, A., Bernardoni, M. & Viceconti, M. A procedure to estimate the origins and the insertions of the knee ligaments from computed tomography images. J. Biomech. 48, 233–237. https://doi.org/10.1016/j.jbiomech.2014.11.041 (2015).
doi: 10.1016/j.jbiomech.2014.11.041
pubmed: 25512017
Pillet, H. et al. Femur, tibia and fibula bone templates to estimate subject-specific knee ligament attachment site locations. J. Biomech. 49, 3523–3528. https://doi.org/10.1016/j.jbiomech.2016.09.027 (2016).
doi: 10.1016/j.jbiomech.2016.09.027
pubmed: 27717547
Bolia, A., Winkels, P. & Böttcher, P. Radiographic location of the femoral footprint of the cranial cruciate ligament in dogs. Tierarztl Prax Ausg K Kleintiere Heimtiere 43, 23–30. https://doi.org/10.15654/tpk-140357 (2015).
doi: 10.15654/tpk-140357
pubmed: 25609136
Hsu, W.-R., Lin, C.-C., Sun, C.-Y. & Wu, C.-H. Ex vivo biomechanical evaluation of extracapsular stabilization with quasi-isometric points in canine cranial cruciate ligament-deficient stifles. BMC Vet. Res. 19, 93 (2023).
doi: 10.1186/s12917-023-03656-7
pubmed: 37488563
pmcid: 10364379
Lin, C. C., Lu, M., Wang, S. N. & Wu, C. H. In vivo three-dimensional isometry analysis of suture attachment sites for extracapsular suture stabilization of the canine stifle. Vet. Rec. 190, e560. https://doi.org/10.1002/vetr.560 (2022).
doi: 10.1002/vetr.560
pubmed: 34125444
Lin, C.-C., Chang, C.-L., Lu, M., Lu, T.-W. & Wu, C.-H. Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion. BMC Vet. Res. 14, 1–11 (2018).
doi: 10.1186/s12917-018-1714-7
Wu, C. H. et al. Evaluation of ranges of motion of a new constrained acetabular prosthesis for canine total hip replacement. Biomed. Eng. Online 12, 116. https://doi.org/10.1186/1475-925x-12-116 (2013).
doi: 10.1186/1475-925x-12-116
pubmed: 24207109
pmcid: 3834103
Lu, H.-Y. et al. Three-dimensional subject-specific knee shape reconstruction with asynchronous fluoroscopy images using statistical shape modeling. Front. Bioeng. Biotechnol. 9, 736420 (2021).
doi: 10.3389/fbioe.2021.736420
pubmed: 34746102
pmcid: 8564181
Myronenko, A. & Song, X. Point set registration: Coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262–2275 (2010).
doi: 10.1109/TPAMI.2010.46
pubmed: 20975122
Jorge, N. & Stephen, J. W. Numerical optimization (Spinger, 2006).
Akhundov, R. et al. Is subject-specific musculoskeletal modelling worth the extra effort or is generic modelling worth the shortcut?. PloS one 17, e0262936 (2022).
doi: 10.1371/journal.pone.0262936
pubmed: 35077508
pmcid: 8789151
Zheng, L., Harner, C. D. & Zhang, X. The morphometry of soft tissue insertions on the tibial plateau: Data acquisition and statistical shape analysis. PLoS One 9, e96515 (2014).
doi: 10.1371/journal.pone.0096515
pubmed: 24788908
pmcid: 4008582
Illés, T. & Somoskeöy, S. The EOS™ imaging system and its uses in daily orthopaedic practice. Int. Orthop. 36, 1325–1331. https://doi.org/10.1007/s00264-012-1512-y (2012).
doi: 10.1007/s00264-012-1512-y
pubmed: 22371113
pmcid: 3385897
Tanegashima, K. et al. Functional anatomy of the craniomedial and caudolateral bundles of the cranial cruciate ligament in beagle dogs. Vet. Comp. Orthop. Traumatol. 32, 182–191. https://doi.org/10.1055/s-0039-1678711 (2019).
doi: 10.1055/s-0039-1678711
pubmed: 30873569