Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli.

Chirps Otoacoustic emissions Swept tones

Journal

Journal of the Association for Research in Otolaryngology : JARO
ISSN: 1438-7573
Titre abrégé: J Assoc Res Otolaryngol
Pays: United States
ID NLM: 100892857

Informations de publication

Date de publication:
26 Feb 2024
Historique:
received: 21 11 2023
accepted: 31 01 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 27 2 2024
Statut: aheadofprint

Résumé

At the 2004 Midwinter Meeting of the Association for Research in Otolaryngology, Glenis Long and her colleagues introduced a method for measuring distortion-product otoacoustic emissions (DPOAEs) using primary-tone stimuli whose instantaneous frequencies vary continuously with time. In contrast to standard OAE measurement methods, in which emissions are measured in the sinusoidal steady state using discrete tones of well-defined frequency, the swept-tone method sweeps across frequency, often at rates exceeding 1 oct/s. The resulting response waveforms are then analyzed using an appropriate filter (e.g., by least-squares fitting). Although introduced as a convenient way of studying DPOAE fine structure by separating the total OAE into distortion and reflection components, the swept-tone method has since been extended to stimulus-frequency emissions and has proved an efficient and valuable tool for probing cochlear mechanics. One day-a long time coming-swept tones may even find their way into the audiology clinic.

Identifiants

pubmed: 38409555
doi: 10.1007/s10162-024-00934-5
pii: 10.1007/s10162-024-00934-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIDCD NIH HHS
ID : R01 DC003687
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Dong W (2015) Personal communication
Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798
pubmed: 9972564
Shera CA (2004) Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear 25:86–97
pubmed: 15064654
Shera CA, Guinan JJ (2008) Mechanisms of mammalian otoacoustic emission. In: Manley GA, Fay RR, Popper AN (eds) Active Processes and Otoacoustic Emissions. Springer, New York, pp 305–342
Long GR, Talmadge CL, Lee J (2004) Using sweeping tones to evaluate DPOAE fine structure. Assoc Res Otolaryngol Abs 27:102
Neely ST, Dierking DM, Hoover BM, Gorga MP (2004) Fast DPOAE I/O measurements covering [Formula: see text]-[Formula: see text] stimulus level space. Assoc Res Otolaryngol Abs 27:100
Neely ST, Johnson TA, Gorga MP (2005) Distortion-product otoacoustic emission measured with continuously varying stimulus level. J Acoust Soc Am 117:1248–1259
pubmed: 15807014
Glavin CC, Dhar S, Goodman SS (2023) Measurement of swept level distortion product otoacoustic emission growth functions at multiple frequencies simultaneously. JASA Express Lett 3:064401
pubmed: 37261430 pmcid: 10236531
Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391
pubmed: 744838
Christensen AT, Abdala C, Shera CA (2019) Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions. J Acoust Soc Am 146:3457–3465
pubmed: 31795700 pmcid: 6872461
Lorenz EM (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141
Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechanisms from a detailed [Formula: see text] area study. J Acoust Soc Am 107:457–473
Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525
pubmed: 11325123
Stiepan S, Goodman SS, Dhar S (2022) Optimizing distortion product otoacoustic emission recordings in normal-hearing ears by adopting cochlear place-specific stimuli. J Acoust Soc Am 152:776–788
pubmed: 36050172 pmcid: 9348896
Raufer S, Abdala C, Kalluri R, Dhar S, Shera CA (2015) Measuring DPOAE area maps using continuously varying primary tones. Assoc Res Otolaryngol Abs 38:482
Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102
pubmed: 26918975
Abbott BP et al (2017) The basic physics of the binary black hole merger GW150914. Ann Phys (Berlin) 529:1600209
Drexl M, Faulstich M, von Stebut B, Radtke-Schuller S, Kössl M (2003) Distortion product otoacoustic emissions and auditory evoked potentials in the hedgehog tenrec, Echinops telfairi. J Assoc Res Otolaryngol 4:555–564
pubmed: 14569428 pmcid: 3202739
Brinkløv S, Fenton MB, Ratcliffe JM (2013) Echolocation in oilbirds and swiftlets. Front Physiol 4:123
pubmed: 23755019 pmcid: 3664765
Griffin DR (1944) Echolocation by blind men, bats, and radar. Science 29:589–590
Neumann J, Uppenkamp S, Kollmeier B (1994) Chirp evoked otoacoustic emissions. Hear Res 79:17–25
pubmed: 7806479
Keefe DH (1998) Double-evoked otoacoustic emissions. I. Measurement theory and nonlinear coherence. J Acoust Soc Am 103:3489–3498
Long GR, Talmadge CL, Lee J (2008) Measuring distortion-product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626
pubmed: 19045653
Swift J (1726) Several remote nations of the world. . Benjamin Motte, London
Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669
pubmed: 18529185 pmcid: 2481564
Shera CA, Abdala C (2016) Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones. J Acoust Soc Am 140:936–944
pubmed: 27586726 pmcid: 5392090
Bennett CL, Özdamar Ö (2010) Swept-tone transient-evoked otoacoustic emissions. J Acoust Soc Am 128:1833–1844
pubmed: 20968356
Abdala C, Dhar S (2010) Distortion-product otoacoustic emission phase and component analysis in human newborns. J Acoust Soc Am 127:316–325
pubmed: 20058979 pmcid: 2821166
Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772
pubmed: 12765394
Joris PX, Bergevin C, Kalluri R, Mc Laughlin M, Michelet P, van der Heijden M, Shera CA (2011) Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci USA 108:17516–17520
pubmed: 21987783 pmcid: 3198376
Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365
pubmed: 20440634 pmcid: 2914235
Dhar S, Rogers A, Abdala C (2011) Breaking away: Violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115–3122
pubmed: 21568414 pmcid: 3108392
Abdala C, Dhar S, Mishra S (2011) The breaking of cochlear scaling symmetry in human newborns and adults. J Acoust Soc Am 129:3104–3114
pubmed: 21568413 pmcid: 3108391
Christensen AT, Abdala C, Shera CA (2020) A cochlea with three parts? Evidence from otoacoustic emission phase in humans. J Acoust Soc Am 148:1585–1601
pubmed: 33003861 pmcid: 7789857
Christensen AT, Shera CA, Abdala C (2021) Extended low-frequency phase of the distortion-product otoacoustic emission in human newborns. JASA Expr Lett 1:014404
Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110
pubmed: 17471725
Charaziak KK, Shera CA (2021) Reflection-source otoacoustic emissions evoked with clicks and frequency sweeps: Comparisons across levels. J Assoc Res Otolaryngol 22:641–658
pubmed: 34606020 pmcid: 8599565
Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281–2298
pubmed: 11108369
Whitehead ML, Stagner BB, Martin GK, Lonsbury-Martin BL (1996) Visualization of the onset of distortion-product otoacoustic emissions and measurement of their latency. J Acoust Soc Am 100:1663–1679
pubmed: 8817893
Kim DO (1980) Cochlear mechanics: Implications of electrophysiological and acoustical observations. Hear Res 2:297–317
pubmed: 7410234
Kemp DT, Brown AM (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Martinus Nijhoff, The Hague, pp 75–82
Kalluri R, Shera CA (2001) Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637
pubmed: 11248969
Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352
pubmed: 8326061
Kalluri R, Shera CA (2007) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575
pubmed: 18247764
Moleti A, Longo F, Sisto R (2012) Time-frequency domain filtering of evoked otoacoustic emissions. J Acoust Soc Am 132:2455–2467
pubmed: 23039440
Shera CA, Bergevin C (2012) Obtaining reliable phase-gradient delays from otoacoustic emission data. J Acoust Soc Am 132:927–943
pubmed: 22894215 pmcid: 3427360
Abdala C, Luo P, Shera CA (2016) Comparison of methods for DPOAE component separation. Assoc Res Otolaryngol Abs 39:PS664. Poster available at https://apg.mechanicsofhearing.org
Smith BK, Sieben UK, Kohlrausch A, Schroeder MW (1986) Phase effects in masking related to dispersion in the inner ear. J Acoust Soc Am 80:1631–1637
pubmed: 3794068
Kohlrausch A, Sander A (1995) Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. J Acoust Soc Am 97:1817–1829
pubmed: 7699163
Oxenham AJ, Dau T (2001) Towards a measure of auditory-filter phase response. J Acoust Soc Am 110:3169–3178
pubmed: 11785818
Oxenham AJ, Dau T (2004) Masker phase effects in normal-hearing and hearing-impaired listeners: Evidence for peripheral compression at low signal frequencies. J Acoust Soc Am 116:2248–2257
pubmed: 15532656
AlMakadma HA, Henin S, Prieve BA, Dyab WM, Long GR (2015) Frequency-change in DPOAE evoked by 1 s/octave sweeping primaries in newborns and adults. Hear Res 328:157–165
pubmed: 26318364
Abdala C, Luo P, Shera CA (2015) Optimizing swept-tone protocols for recording distortion-product otoacoustic emissions in adults and newborns. J Acoust Soc Am 138:3785–3799
pubmed: 26723333 pmcid: 4691260
Shera CA, Charaziak KK (2019) Cochlear frequency tuning and otoacoustic emissions. Cold Spring Harb Perpect Med 9:a033498
Lucier A (1990) I am sitting in a room. Lovely Music Ltd, New York, CD, p 1013
Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF (2015) Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli. J Acoust Soc Am 140:1949–1974
Farina A (2000) Simultaneous measurement of impulse response and distortion with a swept-sine technique. Proc Audio Engr Soc Conv 108:5093
Henin S, Thompson S, Abdelrazeq S, Long GR (2011) Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation. J Acoust Soc Am 129:2068–2079
pubmed: 21476662
Henin S, Long GR, Thompson S (2014) Wideband detection of middle-ear muscle activation using swept-tone distortion-product otoacoustic emissions. J Acoust Soc Am 136:272–283
pubmed: 24993213
Kalluri R, Shera CA (2013) Measuring stimulus-frequency otoacoustic emissions using swept tones. J Acoust Soc Am 134:356–368
pubmed: 23862813 pmcid: 3732205
Zhao W, Dewey JB, Boothalingam S, Dhar S (2015) Efferent modulation of stimulus frequency otoacoustic emission fine structure. Front Syst Neurosci 9:168
pubmed: 26696843 pmcid: 4674573
Dewey JB, Dhar S (2017) Profiles of stimulus-frequency otoacoustic emissions from 0.5 to 20 kHz in humans. J Assoc Res Otolaryngol 18:89–110
pubmed: 27681700
Abdala C, Guardia YC, Shera CA (2018) Swept-tone stimulus-frequency otoacoustic emissions: normative data and methodological considerations. J Acoust Soc Am 143:181–192
pubmed: 29390734 pmcid: 5770274
Mishra SK, Talmadge CL (2018) Sweep-tone evoked stimulus frequency otoacoustic emissions in humans: Development of a noise-rejection algorithm and normative features. Hear Res 358:42–49
pubmed: 29242043
Abdala C, Luo P, Shera CA (2022) Characterizing the relationship between reflection and distortion otoacoustic emissions in normal-hearing adults. J Assoc Res Otolaryngol 23:647–664
pubmed: 35804277 pmcid: 9613820
Ortmann AJ, Abdala C (2016) Changes in the compressive nonlinearity of the cochlea during early aging: Estimates from distortion OAE input/output functions. Ear Hear 37:603–614
pubmed: 27232070 pmcid: 4996700
Prieve BA, Thomas L, Long GR, Talmadge CL (2020) Observations of distortion product otoacoustic emission components in adults with hearing loss. Ear Hear 41:652–662
pubmed: 31569117
Stiepan S, Abdala C, Shera CA (2023) Characterizing a joint reflection-distortion OAE profile in humans with endolymphatic hydrops. Ear Hear 44:1437–1450
pubmed: 37450653
Abdala C, Dhar S (2012) Maturation and aging of the human cochlea: A view through the DPOAE looking glass. J Assoc Res Otolaryngol 13:403–421
pubmed: 22476702 pmcid: 3346898
Abdala C, Dhar S, Ahmadi M, Luo P (2014) Aging of the medial olivocochlear reflex and associations with speech perception. J Acoust Soc Am 135:754–765
pubmed: 25234884 pmcid: 3985974
Abdala C, Ortmann AJ, Shera CA (2018) Reflection- and distortion-source otoacoustic emissions: evidence for increased irregularity in the human cochlea during aging. J Assoc Res Otolaryngol 19:493–510
pubmed: 29968098 pmcid: 6226410
Abdala C, Luo P, Guardia Y (2019) Swept-tone stimulus-frequency otoacoustic emissions in human newborns. Trends Hear 23:2331216519889226
pubmed: 31789131 pmcid: 6887807
Abdala C, Ortmann AJ, Guardia YC (2021) Weakened cochlear nonlinearity during human aging and perceptual correlates. Ear Hear 42:832–845
pubmed: 33886169 pmcid: 8222061
Walsh EJ, Shera CA, Abdala C, Robertson HE, McGee J (2014) Stimulus-frequency and response timing in clouded leopards: Evidence for inner ear adaptation. J Acoust Soc Am 135:2265
Bergevin C, Manley GA, Köppl C (2015) Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Natl Acad Sci USA 112:3362–3367
pubmed: 25737537 pmcid: 4371923
Charaziak KK, Altoè A (2023) Estimating cochlear impulse responses using frequency sweeps. J Acoust Soc Am 153:2251–2261
pubmed: 37092917
Abdala C (2023) Diagnosing hearing loss with reflection and distortion OAEs. In: Ashmore JF, Oghalai JS, Dewey JB et al (eds) The remarkable outer hair cell: proceedings of a symposium in honour of W. E. Brownell. J Assoc Res Otolaryngol 24:117–127

Auteurs

Christopher A Shera (CA)

Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA. christopher.shera@usc.edu.
Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90033, USA. christopher.shera@usc.edu.

Classifications MeSH