Immediate vs. culture-initiated antibiotic therapy in suspected non-severe ventilator-associated pneumonia: a before-after study (DELAVAP).

Antibiotic stewardship Antibiotic therapy Critical care Ventilator-associated pneumonia

Journal

Annals of intensive care
ISSN: 2110-5820
Titre abrégé: Ann Intensive Care
Pays: Germany
ID NLM: 101562873

Informations de publication

Date de publication:
27 Feb 2024
Historique:
received: 02 10 2023
accepted: 02 01 2024
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 27 2 2024
Statut: epublish

Résumé

Ventilator-associated pneumonia (VAP) is the leading nosocomial infection in critical care and is associated with adverse outcomes. When VAP is suspected, starting antibiotic therapy (AT) immediately after pulmonary sampling may expose uninfected patients to unnecessary treatment, whereas waiting for bacteriological confirmation may delay AT in infected patients. As no robust data exist to choose between these strategies, the decision must balance the pre-test diagnostic probability, clinical severity, and risk of antimicrobial resistance. The objective of this study in patients with suspected non-severe VAP was to compare immediate AT started after sampling to conservative AT upon receipt of positive microbiological results. The outcomes were antibiotic sparing, AT suitability, and patient outcomes. This single-center, before-after study included consecutive patients who underwent distal respiratory sampling for a first suspected non-severe VAP episode (no shock requiring vasopressor therapy or severe acute respiratory distress syndrome). AT was started immediately after sampling in 2019 and upon culture positivity in 2022 (conservative strategy). The primary outcome was the number of days alive without AT by day 28. The secondary outcomes were mechanical ventilation duration, day-28 mortality, and AT suitability (active necessary AT or spared AT). The immediate and conservative strategies were applied in 44 and 43 patients, respectively. Conservative and immediate AT were associated with similar days alive without AT (median [interquartile range], 18.0 [0-21.0] vs. 16.0 [0-20.0], p = 0.50) and without broad-spectrum AT (p = 0.53) by day 28. AT was more often suitable in the conservative group (88.4% vs. 63.6%, p = 0.01), in which 27.9% of patients received no AT at all. No significant differences were found for mechanical ventilation duration (median [95%CI], 9.0 [6-19] vs. 9.0 [6-24] days, p = 0.65) or day-28 mortality (hazard ratio [95%CI], 0.85 [0.4-2.0], p = 0.71). In patients with suspected non-severe VAP, waiting for microbiological confirmation was not associated with antibiotic sparing, compared to immediate AT. This result may be ascribable to low statistical power. AT suitability was better with the conservative strategy. None of the safety outcomes differed between groups. These findings would seem to allow a large, randomized trial comparing immediate and conservative AT strategies.

Sections du résumé

BACKGROUND BACKGROUND
Ventilator-associated pneumonia (VAP) is the leading nosocomial infection in critical care and is associated with adverse outcomes. When VAP is suspected, starting antibiotic therapy (AT) immediately after pulmonary sampling may expose uninfected patients to unnecessary treatment, whereas waiting for bacteriological confirmation may delay AT in infected patients. As no robust data exist to choose between these strategies, the decision must balance the pre-test diagnostic probability, clinical severity, and risk of antimicrobial resistance. The objective of this study in patients with suspected non-severe VAP was to compare immediate AT started after sampling to conservative AT upon receipt of positive microbiological results. The outcomes were antibiotic sparing, AT suitability, and patient outcomes.
METHODS METHODS
This single-center, before-after study included consecutive patients who underwent distal respiratory sampling for a first suspected non-severe VAP episode (no shock requiring vasopressor therapy or severe acute respiratory distress syndrome). AT was started immediately after sampling in 2019 and upon culture positivity in 2022 (conservative strategy). The primary outcome was the number of days alive without AT by day 28. The secondary outcomes were mechanical ventilation duration, day-28 mortality, and AT suitability (active necessary AT or spared AT).
RESULTS RESULTS
The immediate and conservative strategies were applied in 44 and 43 patients, respectively. Conservative and immediate AT were associated with similar days alive without AT (median [interquartile range], 18.0 [0-21.0] vs. 16.0 [0-20.0], p = 0.50) and without broad-spectrum AT (p = 0.53) by day 28. AT was more often suitable in the conservative group (88.4% vs. 63.6%, p = 0.01), in which 27.9% of patients received no AT at all. No significant differences were found for mechanical ventilation duration (median [95%CI], 9.0 [6-19] vs. 9.0 [6-24] days, p = 0.65) or day-28 mortality (hazard ratio [95%CI], 0.85 [0.4-2.0], p = 0.71).
CONCLUSION CONCLUSIONS
In patients with suspected non-severe VAP, waiting for microbiological confirmation was not associated with antibiotic sparing, compared to immediate AT. This result may be ascribable to low statistical power. AT suitability was better with the conservative strategy. None of the safety outcomes differed between groups. These findings would seem to allow a large, randomized trial comparing immediate and conservative AT strategies.

Identifiants

pubmed: 38411756
doi: 10.1186/s13613-024-01243-z
pii: 10.1186/s13613-024-01243-z
doi:

Types de publication

Journal Article

Langues

eng

Pagination

33

Informations de copyright

© 2024. The Author(s).

Références

Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis. 2017;36:1999–2006.
pubmed: 27287765 doi: 10.1007/s10096-016-2703-z
Branch-Elliman W, Wright SB, Howell MD. Determining the ideal strategy for ventilator-associated pneumonia prevention cost-benefit analysis. Am J Respir Crit Care Med. 2015;192:57–63.
pubmed: 25871807 doi: 10.1164/rccm.201412-2316OC
Bekaert M, Timsit J-F, Vansteelandt S, Depuydt P, Vésin A, Garrouste-Orgeas M, et al. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. Am J Respir Crit Care Med. 2011;184:1133–9.
pubmed: 21852541 doi: 10.1164/rccm.201105-0867OC
Klompas M. Does this patient have ventilator-associated pneumonia? JAMA. 2007;297:1583–93.
pubmed: 17426278 doi: 10.1001/jama.297.14.1583
Guidry CA, Beyene RT, Watson CM, Sawyer RG, Chollet-Hinton L, Simpson SQ, et al. Trial of antibiotic restraint in presumed pneumonia: A Surgical Infection Society multicenter pilot. J Trauma Acute Care Surg. 2023;94:232.
pubmed: 36534474 doi: 10.1097/TA.0000000000003839
Lucet JC, Chevret S, Decré D, Vanjak D, Macrez A, Bédos JP, et al. Outbreak of multiply resistant enterobacteriaceae in an intensive care unit: epidemiology and risk factors for acquisition. Clin Infect Dis Off Publ Infect Dis Soc Am. 1996;22:430–6.
doi: 10.1093/clinids/22.3.430
D’Agata EM, Venkataraman L, DeGirolami P, Burke P, Eliopoulos GM, Karchmer AW, et al. Colonization with broad-spectrum cephalosporin-resistant gram-negative bacilli in intensive care units during a nonoutbreak period: prevalence, risk factors, and rate of infection. Crit Care Med. 1999;27:1090–5.
pubmed: 10397210 doi: 10.1097/00003246-199906000-00026
Richard P, Delangle MH, Raffi F, Espaze E, Richet H. Impact of fluoroquinolone administration on the emergence of fluoroquinolone-resistant gram-negative bacilli from gastrointestinal flora. Clin Infect Dis Off Publ Infect Dis Soc Am. 2001;32:162–6.
doi: 10.1086/317551
Le Terrier C, Vinetti M, Bonjean P, Richard R, Jarrige B, Pons B, et al. Impact of a restrictive antibiotic policy on the acquisition of extended-spectrum beta-lactamase-producing Enterobacteriaceae in an endemic region: a before-and-after, propensity-matched cohort study in a Caribbean intensive care unit. Crit Care Lond Engl. 2021;25:261.
doi: 10.1186/s13054-021-03660-z
Hranjec T, Rosenberger LH, Swenson B, Metzger R, Flohr TR, Politano AD, et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis. 2012;12:774–80.
pubmed: 22951600 pmcid: 3462590 doi: 10.1016/S1473-3099(12)70151-2
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 Countries. JAMA. 2016;315:788–800.
pubmed: 26903337 doi: 10.1001/jama.2016.0291
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49: e1063.
pubmed: 34605781 doi: 10.1097/CCM.0000000000005337
Karakuzu Z, Iscimen R, Akalin H, Girgin NK, Kahveci F, Sinirtas M. Prognostic risk factors in ventilator-associated pneumonia. Med Sci Monit Int Med J Exp Clin Res. 2018;24:1321–8.
Martin-Loeches I, Torres A, Povoa P, Zampieri FG, Salluh J, Nseir S, et al. The association of cardiovascular failure with treatment for ventilator-associated lower respiratory tract infection. Intensive Care Med. 2019;45:1753–62.
pubmed: 31620836 doi: 10.1007/s00134-019-05797-6
Zampieri FG, Póvoa P, Salluh JI, Rodriguez A, Valade S, Andrade Gomes J, et al. Lower respiratory tract infection and short-term outcome in patients with acute respiratory distress syndrome. J Intensive Care Med. 2020;35:588–94.
pubmed: 29699468 doi: 10.1177/0885066618772498
Moreau A-S, Martin-Loeches I, Povoa P, Salluh J, Rodriguez A, Thille AW, et al. Impact of immunosuppression on incidence, aetiology and outcome of ventilator-associated lower respiratory tract infections. Eur Respir J. 2018;51:1701656.
pubmed: 29439020 doi: 10.1183/13993003.01656-2017
Vacheron C-H, Lepape A, Savey A, Machut A, Timsit JF, Vanhems P, et al. Increased incidence of ventilator-acquired pneumonia in coronavirus disease 2019 patients: a multicentric Cohort study. Crit Care Med. 2022;50:449–59.
pubmed: 34637422 doi: 10.1097/CCM.0000000000005297
Kalanuria AA, Zai W, Mirski M. Ventilator-associated pneumonia in the ICU. Crit Care. 2014;18:208.
pubmed: 25029020 pmcid: 4056625 doi: 10.1186/cc13775
Leone M, Bouadma L, Bouhemad B, Brissaud O, Dauger S, Gibot S, et al. Pneumonies associées aux soins de réanimation* RFE commune SFAR–SRLF. Médecine Intensive Réanimation. 2019;28:261–81.
doi: 10.3166/rea-2019-0106
Berton DC, Kalil AC, Teixeira PJZ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev. 2014. https://doi.org/10.1002/14651858.CD006482.pub4 .
doi: 10.1002/14651858.CD006482.pub4 pubmed: 25354013
SPF. Surveillance de la consommation d’antibiotiques et des résistances bactériennes en établissement de santé. Mission Spares. Résultats 2021. https://www.santepubliquefrance.fr/maladies-et-traumatismes/infections-associees-aux-soins-et-resistanceaux-antibiotiques/resistance-aux-antibiotiques/documents/rapport-synthese/surveillance-de-la-consommation-dantibiotiques-et-des-resistances-bacteriennes-en-etablissement-de-sante-mission-spares.-resultats-2021
O’Horo JC, Thompson D, Safdar N. Is the gram stain useful in the microbiologic diagnosis of VAP? A Meta-analysis. Clin Infect Dis. 2012;55:551–61.
pubmed: 22677711 doi: 10.1093/cid/cis512
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2022;28:521–47.
Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9:591–7.
pubmed: 7261642 doi: 10.1097/00003246-198108000-00008
Chastre J, Wolff M, Fagon J-Y, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–98.
pubmed: 14625336 doi: 10.1001/jama.290.19.2588
Defined Daily Dose (DDD). https://www.whocc.no/ddd/definition_and_general_considera/
Stanić Benić M, Milanič R, Monnier AA, Gyssens IC, Adriaenssens N, Versporten A, et al. Metrics for quantifying antibiotic use in the hospital setting: results from a systematic review and international multidisciplinary consensus procedure. J Antimicrob Chemother. 2018;2018(73):vi50-8.
doi: 10.1093/jac/dky118
Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–8.
pubmed: 12114368 doi: 10.1378/chest.122.1.262
Clec’h C, Timsit J-F, Lassence AD, Azoulay E, Alberti C, Garrouste-Orgeas M, et al. Efficacy of adequate early antibiotic therapy in ventilator-associated pneumonia: influence of disease severity. Intensive Care Med. 2004;2004(30):1327–33.
doi: 10.1007/s00134-004-2292-7
Dupont H, Mentec H, Sollet JP, Bleichner G. Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia. Intensive Care Med. 2001;27:355–62.
pubmed: 11396279 doi: 10.1007/s001340000640
Leroy O, Meybeck A, d’Escrivan T, Devos P, Kipnis E, Georges H. Impact of adequacy of initial antimicrobial therapy on the prognosis of patients with ventilator-associated pneumonia. Intensive Care Med. 2003;29:2170–3.
pubmed: 13680112 doi: 10.1007/s00134-003-1990-x
Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C. The attributable morbidity and mortality of ventilator-associated pneumonia in the critically Ill patient. Am J Respir Crit Care Med. 1999;159:1249–56.
pubmed: 10194173 doi: 10.1164/ajrccm.159.4.9807050
Sanchez-Nieto JM, Torres A, Garcia-Cordoba F, El-Ebiary M, Carrillo A, Ruiz J, et al. Impact of invasive and noninvasive quantitative culture sampling on outcome of ventilator-associated Pneumonia: a pilot study. Am J Respir Crit Care Med. 1998;157:371–6.
pubmed: 9476845 doi: 10.1164/ajrccm.157.2.97-02039
Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111:676–85.
pubmed: 9118708 doi: 10.1378/chest.111.3.676
Rello J, Gallego M, Mariscal D, Soñora R, Valles J. The value of routine microbial investigation in ventilator-associated Pneumonia. Am J Respir Crit Care Med. 1997;156:196–200.
pubmed: 9230747 doi: 10.1164/ajrccm.156.1.9607030
Kollef MH, Ward S. The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest. 1998;113:412–20.
pubmed: 9498961 doi: 10.1378/chest.113.2.412
Timsit JF, Cheval C, Gachot B, Bruneel F, Wolff M, Carlet J, et al. Usefulness of a strategy based on bronchoscopy with direct examination of bronchoalveolar lavage fluid in the initial antibiotic therapy of suspected ventilator-associated pneumonia. Intensive Care Med. 2001;27:640–7.
pubmed: 11398689 doi: 10.1007/s001340000840
Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: a meta-analysis. J Crit Care. 2008;23:91–100.
pubmed: 18359426 doi: 10.1016/j.jcrc.2007.08.007
Fernando SM, Tran A, Cheng W, Klompas M, Kyeremanteng K, Mehta S, et al. Diagnosis of ventilator-associated pneumonia in critically ill adult patients-a systematic review and meta-analysis. Intensive Care Med. 2020;46:1170–9.
pubmed: 32306086 pmcid: 7223448 doi: 10.1007/s00134-020-06036-z
Nora D, Póvoa P. Antibiotic consumption and ventilator-associated pneumonia rates, some parallelism but some discrepancies. Ann Transl Med. 2017;5:450.
pubmed: 29264367 pmcid: 5721221 doi: 10.21037/atm.2017.09.16
Hassinger TE, Sawyer RG. Should we immediately start antibiotics in every patient with a clinical suspicion of HAP/VAP? Semin Respir Crit Care Med. 2017;38:245–52.
pubmed: 28578549 doi: 10.1055/s-0037-1602581
Denny KJ, De Wale J, Laupland KB, Harris PNA, Lipman J. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect. 2020;26:35–40.
pubmed: 31306790 doi: 10.1016/j.cmi.2019.07.007
Prescott HC, Iwashyna TJ. Improving sepsis treatment by embracing diagnostic uncertainty. Ann Am Thorac Soc. 2019;16:426–9.
pubmed: 30883190 pmcid: 6441693 doi: 10.1513/AnnalsATS.201809-646PS
Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE. The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med. 2015;43:1907–15.
pubmed: 26121073 pmcid: 4597314 doi: 10.1097/CCM.0000000000001142
Bisarya R, Song X, Salle J, Liu M, Patel A, Simpson SQ. Antibiotic timing and progression to septic shock among patients in the ED with suspected infection. Chest. 2022;161:112–20.
pubmed: 34186038 doi: 10.1016/j.chest.2021.06.029
Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376:2235–44.
pubmed: 28528569 pmcid: 5538258 doi: 10.1056/NEJMoa1703058
Alam N, Oskam E, Stassen PM, van Exter P, van de Ven PM, Haak HR, et al. Prehospital antibiotics in the ambulance for sepsis: a multicentre, open label, randomised trial. Lancet Respir Med. 2018;6:40–50.
pubmed: 29196046 doi: 10.1016/S2213-2600(17)30469-1
Chang R, Elhusseiny KM, Yeh Y-C, Sun W-Z. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PLoS ONE. 2021;16: e0246318.
pubmed: 33571301 pmcid: 7877631 doi: 10.1371/journal.pone.0246318
Blonz G, Kouatchet A, Chudeau N, Pontis E, Lorber J, Lemeur A, et al. Epidemiology and microbiology of ventilator-associated pneumonia in COVID-19 patients: a multicenter retrospective study in 188 patients in an un-inundated French region. Crit Care. 2021;25:72.
pubmed: 33602296 pmcid: 7891465 doi: 10.1186/s13054-021-03493-w
Rouzé A, Martin-Loeches I, Povoa P, Makris D, Artigas A, Bouchereau M, et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive Care Med. 2021;47:188–98.
pubmed: 33388794 pmcid: 7778569 doi: 10.1007/s00134-020-06323-9
Bambi S, Iozzo P, Lucchini A. New issues in nursing management during the COVID-19 pandemic in Italy. Am J Crit Care. 2020;29:e92–3.
pubmed: 32467964 doi: 10.4037/ajcc2020937
Rahmani K, Shavaleh R, Forouhi M, Disfani HF, Kamandi M, Oskooi RK, et al. The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: a systematic review and meta-analysis. Front Public Health. 2022;10: 873596.
pubmed: 36091533 pmcid: 9459165 doi: 10.3389/fpubh.2022.873596
Yoshimura J, Yamakawa K, Ohta Y, Nakamura K, Hashimoto H, Kawada M, et al. Effect of gram stain-guided initial antibiotic therapy on clinical response in patients with ventilator-associated Pneumonia: the GRACE-VAP randomized clinical trial. JAMA Netw Open. 2022;5: e226136.
pubmed: 35394515 pmcid: 8994124 doi: 10.1001/jamanetworkopen.2022.6136

Auteurs

Maëlle Martin (M)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France. maelle.martin@chu-nantes.fr.

Solène Forveille (S)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Jean-Baptiste Lascarrou (JB)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Amélie Seguin (A)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Emmanuel Canet (E)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Jérémie Lemarié (J)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Maïté Agbakou (M)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Luc Desmedt (L)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Gauthier Blonz (G)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Olivier Zambon (O)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.

Stéphane Corvec (S)

Nantes Université, CHU Nantes, Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie Et Des Contrôles Microbiologiques, Nantes, France.

Aurélie Le Thuaut (A)

Nantes Université, CHU Nantes, Plateforme de méthodologie et biostatistique, Direction de la recherche et de l'innovation, Nantes, France.

Jean Reignier (J)

Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Nantes, France.
Nantes Université, CHU Nantes, Médecine Intensive Réanimation, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France.

Classifications MeSH