Analysis of Protein Glycosylation in the ER.

ERAD Glycoprotein N-glycosylation Oligosaccharyltransferase Quality control

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 27 2 2024
pubmed: 27 2 2024
entrez: 27 2 2024
Statut: ppublish

Résumé

Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum (ER). In plants, the N-glycans play a pivotal role in protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate-binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.

Identifiants

pubmed: 38411817
doi: 10.1007/978-1-0716-3710-4_16
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

221-238

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Xu C, Ng DT (2015) O-mannosylation: the other glycan player of ER quality control. Semin Cell Dev Biol 41:129–134
pubmed: 25666261 doi: 10.1016/j.semcdb.2015.01.014
Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21:149–158
pubmed: 21145746 doi: 10.1016/j.tcb.2010.11.004
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM (2021) Cracking the “sugar code”: a snapshot of N- and O-glycosylation pathways and functions in plants cells. Front Plant Sci 12:640919
pubmed: 33679857 pmcid: 7933510 doi: 10.3389/fpls.2021.640919
Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939
pubmed: 26911286 pmcid: 5045529 doi: 10.1093/glycob/cww023
Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437
pubmed: 23583305 doi: 10.1016/j.bbamcr.2013.04.001
Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82
pubmed: 19853458 doi: 10.1016/j.tibs.2009.10.001
Kang J, Frank J, Kang C, Kajiura H, Vikram M, Ueda A, Kim S, Bahk J, Triplett B, Fujiyama K, Lee S, von Schaewen A, Koiwa H (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci U S A 105:5933–5938
pubmed: 18408158 pmcid: 2311335 doi: 10.1073/pnas.0800237105
Fanata WI, Lee KH, Son BH, Yoo JY, Harmoko R, Ko KS, Ramasamy NK, Kim KH, Oh DB, Jung HS, Kim JY, Lee SY, Lee KO (2013) N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73:966–979
pubmed: 23199012 doi: 10.1111/tpj.12087
Strasser R (2022) Recent developments in deciphering the biological role of plant complex N-Glycans. Front Plant Sci 13:897549
pubmed: 35557740 pmcid: 9085483 doi: 10.3389/fpls.2022.897549
Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818
pubmed: 17024709 doi: 10.1002/anie.200601645
Farid A, Pabst M, Schoberer J, Altmann F, Glössl J, Strasser R (2011) Arabidopsis thaliana alpha1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth. Plant J 68:314–325
pubmed: 21707802 pmcid: 3204403 doi: 10.1111/j.1365-313X.2011.04688.x
Kelleher D, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R
pubmed: 16317064 doi: 10.1093/glycob/cwj066
Shrimal S, Gilmore R (2019) Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 29:288–297
pubmed: 30312397 doi: 10.1093/glycob/cwy093
Jeong IS, Lee S, Bonkhofer F, Tolley J, Fukudome A, Nagashima Y, May K, Rips S, Lee SY, Gallois P, Russell WK, Jung HS, von Schaewen A, Koiwa H (2018) Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies. Plant J 94:131–145
pubmed: 29385647 doi: 10.1111/tpj.13847
Koiwa H, Li F, McCully M, Mendoza I, Koizumi N, Manabe Y, Nakagawa Y, Zhu J, Rus A, Pardo J, Bressan R, Hasegawa P (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–2284
pubmed: 12972670 pmcid: 197294 doi: 10.1105/tpc.013862
Nekrasov V, Li J, Batoux M, Roux M, Chu Z, Lacombe S, Rougon A, Bittel P, Kiss-Papp M, Chinchilla D, van Esse H, Jorda L, Schwessinger B, Nicaise V, Thomma B, Molina A, Jones J, Zipfel C (2009) Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 28:3428–3438
pubmed: 19763086 pmcid: 2776097 doi: 10.1038/emboj.2009.262
Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X, Robatzek S, Schulze-Lefert P (2009) Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 28:3439–3449
pubmed: 19763087 pmcid: 2776098 doi: 10.1038/emboj.2009.263
Lerouxel O, Mouille G, Andème-Onzighi C, Bruyant M, Séveno M, Loutelier-Bourhis C, Driouich A, Höfte H, Lerouge P (2005) Mutants in defective glycosylation, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant J 42:455–468
pubmed: 15860005 doi: 10.1111/j.1365-313X.2005.02392.x
Farid A, Malinovsky FG, Veit C, Schoberer J, Zipfel C, Strasser R (2013) Specialized roles of the conserved subunit OST3/6 of the oligosaccharyltransferase complex in innate immunity and tolerance to abiotic stresses. Plant Physiol 162:24–38
pubmed: 23493405 pmcid: 3641206 doi: 10.1104/pp.113.215509
Müller LM, Lindner H, Pires ND, Gagliardini V, Grossniklaus U (2016) A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis. Nat Commun 7:10826
pubmed: 26964640 pmcid: 4792959 doi: 10.1038/ncomms10826
Caramelo JJ, Parodi AJ (2015) A sweet code for glycoprotein folding. FEBS Lett 589:3379–3387
pubmed: 26226420 doi: 10.1016/j.febslet.2015.07.021
Schoberer J, König J, Veit C, Vavra U, Liebminger E, Botchway SW, Altmann F, Kriechbaumer V, Hawes C, Strasser R (2019) A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun 10:3701
pubmed: 31420549 pmcid: 6697737 doi: 10.1038/s41467-019-11686-9
Vembar S, Brodsky J (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957
pubmed: 19002207 pmcid: 2654601 doi: 10.1038/nrm2546
Hüttner S, Veit C, Vavra U, Schoberer J, Liebminger E, Maresch D, Grass J, Altmann F, Mach L, Strasser R (2014) Arabidopsis class I α-mannosidases MNS4 and MNS5 are involved in endoplasmic reticulum-associated degradation of misfolded glycoproteins. Plant Cell 26:1712–1728
pubmed: 24737672 pmcid: 4036581 doi: 10.1105/tpc.114.123216
Liu Y, Li J (2014) Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front Plant Sci 5:162
pubmed: 24817869 pmcid: 4012192 doi: 10.3389/fpls.2014.00162
Hüttner S, Veit C, Schoberer J, Grass J, Strasser R (2012) Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins. Plant Mol Biol 79:21–33
pubmed: 22328055 pmcid: 3332353 doi: 10.1007/s11103-012-9891-4
Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116
pubmed: 9373144 doi: 10.1016/S0378-1119(97)00388-0
Liebminger E, Grass J, Jez J, Neumann L, Altmann F, Strasser R (2012) Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry 84:24–30
pubmed: 23009876 pmcid: 3494833 doi: 10.1016/j.phytochem.2012.08.023
Schoberer J, Runions J, Steinkellner H, Strasser R, Hawes C, Osterrieder A (2010) Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation. Traffic 11:1429–1444
pubmed: 20716110 pmcid: 3039244 doi: 10.1111/j.1600-0854.2010.01106.x
Jin H, Yan Z, Nam K, Li J (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26:821–830
pubmed: 17588517 pmcid: 1948852 doi: 10.1016/j.molcel.2007.05.015
Gruber C, Altmann F (2015) Site-specific glycosylation profiling using liquid chromatography-tandem mass spectrometry (LC-MS). Methods Mol Biol 1321:407–415
pubmed: 26082237 doi: 10.1007/978-1-4939-2760-9_27
Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605
pubmed: 2144287 doi: 10.1016/S0021-9258(18)55439-9
Clerc S, Hirsch C, Oggier D, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172
pubmed: 19124653 pmcid: 2615083 doi: 10.1083/jcb.200809198
Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206:347–356
pubmed: 25092655 pmcid: 4121980 doi: 10.1083/jcb.201404075
Su W, Liu Y, Xia Y, Hong Z, Li J (2012) The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases. Mol Plant 5:929–940
pubmed: 22516478 pmcid: 3399701 doi: 10.1093/mp/sss042
Zielinska DF, Gnad F, Schropp K, Wiśniewski JR, Mann M (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46:542–548
pubmed: 22633491 doi: 10.1016/j.molcel.2012.04.031
de Oliveira MVV, Xu G, Li B, de Souza VL, Meng X, Chen X, Yu X, de Souza SA, Intorne AC, de A. Manhães AME, Musinsky AL, Koiwa H, de Souza Filho GA, Shan L, He P (2016) Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation. Nat Plants 2:15218
pubmed: 27250875 pmcid: 5572757 doi: 10.1038/nplants.2015.218
Hori H, Elbein AD (1981) Tunicamycin inhibits protein glycosylation in suspension cultured soybean cells. Plant Physiol 67:882–886
pubmed: 16661786 pmcid: 425794 doi: 10.1104/pp.67.5.882
Veit C, Vavra U, Strasser R (2015) N-glycosylation and plant cell growth. Methods Mol Biol 1242:183–194
pubmed: 25408454 doi: 10.1007/978-1-4939-1902-4_16
Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R (2014) The transmembrane domain of N -acetylglucosaminyltransferase I is the key determinant for its Golgi subcompartmentation. Plant J 80:809–822
pubmed: 25230686 pmcid: 4282539 doi: 10.1111/tpj.12671
Hong Z, Jin H, Tzfira T, Li J (2008) Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418–3429
pubmed: 19060110 pmcid: 2630446 doi: 10.1105/tpc.108.061879
Hüttner S, Veit C, Vavra U, Schoberer J, Dicker M, Maresch D, Altmann F, Strasser R (2014) A context-independent N-glycan signal targets the misfolded extracellular domain of Arabidopsis STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochem J 464:401–411
pubmed: 25251695 doi: 10.1042/BJ20141057
Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novák O, Senes A, Werner T (2018) The cytokinin oxidase/dehydrogenase CKX1 is a membrane-bound protein requiring homooligomerization in the endoplasmic reticulum for its cellular activity. Plant Physiol 176:2024–2039
pubmed: 29301955 pmcid: 5841711 doi: 10.1104/pp.17.00925
Shin YJ, Vavra U, Veit C, Strasser R (2018) The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. Plant J 94:246–259
pubmed: 29396984 pmcid: 5900737 doi: 10.1111/tpj.13851
Shin YJ, Vavra U, Strasser R (2021) Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants. Plant Physiol 186:1878–1892
pubmed: 33930152 pmcid: 8331152 doi: 10.1093/plphys/kiab181

Auteurs

Jennifer Schoberer (J)

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.

Yun-Ji Shin (YJ)

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.

Ulrike Vavra (U)

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.

Christiane Veit (C)

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.

Richard Strasser (R)

Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria. richard.strasser@boku.ac.at.

Classifications MeSH