Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models.
ecosystem vegetation models
fine roots
hydraulics
nutrient acquisition
phosphorus uptake
plant functional types
root trait clusters
tropical forests
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
28 Feb 2024
28 Feb 2024
Historique:
received:
18
05
2023
accepted:
10
01
2024
medline:
28
2
2024
pubmed:
28
2
2024
entrez:
28
2
2024
Statut:
aheadofprint
Résumé
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO
Autres résumés
Type: Publisher
(spa)
Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Directorate for Biological Sciences
ID : BCS-1437591
Organisme : Biological and Environmental Research
ID : DE-SC0015898
Organisme : DOE Office of Science Biological and Environmental Research Program as part of the NGEE-Tropics Program
Organisme : European Union's Horizon 2020 research and innovation program
ID : 847693
Organisme : Bayerische Staatskanzlei (Bavarian State Chancellery)
Organisme : NOAA Climate and Global Change Postdoctoral Fellowship Program
ID : NA18NWS4620043B
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : 316045089/GRK 2300
Organisme : United Kingdom Natural Environment Research Council
ID : NE/M019497/1
Organisme : National Science Foundation Research Coordination
ID : DEB-1754126
Informations de copyright
© 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.
Références
Addo-Danso SD, Defrenne CE, McCormack ML, Ostonen I, Addo-Danso A, Foli EG, Borden KA, Isaac ME, Prescott CE. 2020. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology 221: 1-13.
Addo-Danso SD, Prescott CE, Adu-Bredu S, Duah-Gyamfi A, Moore S, Guy RD, Forrester DI, Owusu-Afriyie K, Marshall PL, Malhi Y. 2018. Fine-root exploitation strategies differ in tropical old growth and logged-over forests in Ghana. Biotropica 50: 606-615.
Allen K, Fisher JB, Phillips RP, Powers JS, Brzostek ER. 2020. Modeling the carbon cost of plant nitrogen and phosphorus uptake across temperate and tropical forests. Frontiers in Forests and Global Change 3: 110491.
Aragao L, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jimenez E, Navarrete D, Almeida S, Costa ACL, Salinas N, Phillips OL et al. 2009. Above- and belowground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6: 2759-2778.
Asefa M, Worthy SJ, Cao M, Song XY, Lozano YM, Yang J. 2022. Above- and belowground plant traits are not consistent in response to drought and competition treatments. Annals of Botany 130: 939-950.
Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN. 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences, USA 116: 23163-23168.
Barron AR, Purves DW, Hedin LO. 2011. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165: 511-520.
Batterman SA, Hall JS, Turner BL, Hedin LO, Walter JKL, Sheldon P, van Breugel M. 2018. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecology Letters 21: 1486-1495.
Belda DM, Anthoni P, Warlind D, Olin S, Schurgers G, Tang J, Smith B, Arneth A. 2022. LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism. Geoscientific Model Development 15: 6709-6745.
Bergmann J, Weigelt A, van Der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez NR, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM et al. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: eaba3756.
Bonan GB, Doney SC. 2018. Climate, ecosystems, and planetary futures: the challenge to predict life in earth system models. Science 359: eaam8328.
Braghiere RK, Fisher JB, Allen K, Brzostek E, Shi M, Yang X, Ricciuto DM, Fisher RA, Zhu Q, Phillips RP. 2022. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. Journal of Advances in Modeling Earth Systems 14: e2022MS003204.
Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragao L, Barros F et al. 2019. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology 107: 318-333.
Brzostek ER, Fisher JB, Phillips RP. 2014. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. Journal of Geophysical Research - Biogeosciences 119: 1684-1697.
Cabugao KG, Yaffar D, Stenson N, Childs J, Phillips J, Mayes MA, Yang XJ, Weston DJ, Norby RJ. 2021. Bringing function to structure: root-soil interactions shaping phosphatase activity throughout a soil profile in Puerto Rico. Ecology and Evolution 11: 1150-1164.
Caldararu S, Rolo V, Stocker BD, Gimeno TE, Nair R. 2023. Ideas and perspectives: beyond model evaluation - combining experiments and models to advance terrestrial ecosystem science. Biogeosciences Discussions 20: 3637-3649.
Carmona CP, Bueno CG, Toussaint A, Trager S, Diaz S, Moora M, Munson AD, Partel M, Zobel M, Tamme R. 2021. Fine-root traits in the global spectrum of plant form and function. Nature 597: 683.
Chaudhary VB, Holland EP, Charman-Anderson S, Guzman A, Bell-Dereske L, Cheeke TE, Corrales A, Duchicela J, Egan C, Gupta MM et al. 2022. What are mycorrhizal traits? Trends in Ecology & Evolution 37: 573-581.
Chave J. 1999. Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecological Modelling 124: 233-254.
Chitra-Tarak R, Xu CG, Aguilar S, Anderson-Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD et al. 2021. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytologist 231: 1798-1813.
Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR, Kruijt B, Rowland L, Fisher RA, Binks OJ et al. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geoscientific Model Development 9: 4227-4255.
Chuyong CB, Newbery DM, Songwe NC. 2000. Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees. New Phytologist 148: 493-510.
Condit R, Engelbrecht BMJ, Pino D, Perez R, Turner BL. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences, USA 110: 5064-5068.
Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Nunez P, Aguilar S, Valencia R, Villa G et al. 2002. Beta-diversity in tropical forest trees. Science 295: 666-669.
Cornelissen JHC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129: 611-619.
Cunha HFV, Andersen KM, Lugli LF, Santana FD, Aleixo IF, Moraes AM, Garcia S, Di Ponzio R, Mendoza EO, Brum B et al. 2022. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 608: 558.
Cusack DF, Addo-Danso SD, Agee EA, Andersen KM, Arnaud M, Batterman SA, Brearley FQ, Ciochina MI, Cordeiro AL, Dallstream C et al. 2021. Tradeoffs and synergies in tropical forest root traits and dynamics for nutrient and water acquisition: field and modeling advances. Frontiers in Forests and Global Change 4: 704469.
Cusack DF, Markesteijn L, Condit R, Lewis OT, Turner BL. 2018. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry 137: 253-266.
Cusack DF, Turner BL. 2021. Fine root and soil organic carbon depth distributions are inversely related across fertility and rainfall gradients in lowland tropical forests. Ecosystems 24: 1075-1092.
Dallstream C, Weemstra M, Soper FM. 2023. A framework for fine-root trait syndromes: syndrome coexistence may support phosphorus partitioning in tropical forests. Oikos 2023: e08908.
Davies-Barnard T, Zaehle S, Friedlingstein P. 2022. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19: 3491-3503.
Domec J-C, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R. 2006. Diurnal and seasonal variation in root xylem embolism in Neotropical savanna woody species: impact on stomatal control of plant water status. Plant, Cell & Environment 29: 26-35.
Drewniak BA. 2019. Simulating dynamic roots in the Energy Exascale Earth System Land Model. Journal of Advances in Modeling Earth Systems 11: 338-359.
Eiserhardt WL, Couvreur TLP, Baker WJ. 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytologist 214: 1408-1422.
Fer I, Gardella AK, Shiklomanov AN, Campbell EE, Cowdery EM, De Kauwe MG, Desai A, Duveneck MJ, Fisher JB, Haynes KD et al. 2021. Beyond ecosystem modeling: a roadmap to community cyberinfrastructure for ecological data-model integration. Global Change Biology 27: 13-26.
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240.
Finer L, Ohashi M, Noguchi K, Hirano Y. 2011. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management 262: 2008-2023.
Fischer R, Bohn F, de Paula MD, Dislich C, Groeneveld J, Gutierrez AG, Kazmierczak M, Knapp N, Lehmann S, Paulick S et al. 2016. Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling 326: 124-133.
Fisher JB, Badgley G, Blyth E. 2012. Global nutrient limitation in terrestrial vegetation. Global Biogeochemical Cycles 26: 4252.
Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM et al. 2015. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes. Geoscientific Model Development 8: 3593-3619.
Fisher JB, Perakalapudi NV, Turner BL, Schimel DS, Cusack DF. 2020. Competing effects of soil fertility and toxicity on tropical greening. Scientific Reports 10: 6725.
Fisher JB, Sitch S, Malhi Y, Fisher RA, Huntingford C, Tan S-Y. 2010. Carbon cost of plant nitrogen acquisition: a mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation. Global Biogeochemical Cycles 24: GB1014.
Fleischer K, Rammig A, De Kauwe MG, Walker AP, Domingues TF, Fuchslueger L, Garcia S, Goll DS, Grandis A, Jiang MK et al. 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience 12: 736.
Fortunel C, Paine CET, Fine PVA, Kraft NJB, Baraloto C. 2014. Environmental factors predict community functional composition in Amazonian forests. Journal of Ecology 102: 145-155.
Freschet GT, Pages L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimesova J, Zadworny M, Poorter H, Postma JA et al. 2021a. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist 232: 973-1122.
Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimesova J et al. 2021b. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist 232: 1123-1158.
Fyllas NM, Quesada CA, Lloyd J. 2012. Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspectives in Plant Ecology, Evolution and Systematics 14: 97-110.
Germon A, Laclau JP, Robin A, Jourdan C. 2020. Tamm review: deep fine roots in forest ecosystems: why dig deeper? Forest Ecology and Management 466: 118135.
Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8: 215.
Guerrero-Ramirez NR, Mommer L, Freschet GT, Iversen CM, McCormack ML, Kattge J, Poorter H, van der Plas F, Bergmann J, Kuyper TW et al. 2021. Global root traits (GRooT) database. Global Ecology and Biogeography 30: 25-37.
Guilbeault-Mayers X, Turner BL, Laliberte E. 2020. Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species. Ecology 101: e03090.
Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z. 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist 180: 673-683.
Han MG, Chen Y, Li R, Yu M, Fu LC, Li SF, Su JR, Zhu B. 2022. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist 234: 837-849.
Hart TB, Hart JA, Murphy PG. 1989. Monodominant and species-rich forests of the humid tropics - causes for their co-occurrence. American Naturalist 133: 613-633.
Haverd V, Smith B, Nieradzik L, Briggs PR, Woodgate W, Trudinger CM, Canadell JG, Cuntz M. 2018. A new version of the CABLE land surface model (subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model Development 11: 2995-3026.
Hengl T, de Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotic A, Shangguan W, Wright MN, Geng XY, Bauer-Marschallinger B et al. 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12: 169748.
Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA. 2011. Species- and community-level patterns in fine root traits along a 120,000-year soil chronosequence in temperate rain forest. Journal of Ecology 99: 954-963.
Holzman BA. 2008. Tropical forest biomes. London, UK: Greenwood Publishing Group.
Houlton BZ, Wang YP, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454: 327-334.
Huasco WH, Riutta T, Girardin CAJ, Pacha FH, Vilca BPL, Moore S, Rifai SW, del Aguila-Pasquel J, Murakami AA, Freitag R et al. 2021. Fine root dynamics across pantropical rainforest ecosystems. Global Change Biology 27: 3657-3680.
Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB. 2003. Nitrogen and climate change. Science 302: 1512-1513.
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389-411.
Janos DP, Scott J, Bowman D. 2008. Temporal and spatial variation of fine roots in a northern Australian Eucalyptus tetrodonta savanna. Journal of Tropical Ecology 24: 177-188.
Janzen DH. 1974. Tropical black water rivers animals and mast fruiting by the Dipterocarpaceae. Biotropica 6: 69-103.
Jiang XY, Jia X, Gao SJ, Jiang Y, Wei NN, Han C, Zha TS, Liu P, Tian Y, Qin SG. 2021. Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland. Frontiers in Plant Science 12: 734775.
Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423-436.
Jones FA, Erickson DL, Bernal MA, Bermingham E, Kress WJ, Herre EA, Muller-Landau HC, Turner BL. 2011. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling. PLoS ONE 6: e24506.
Joshi J, Stocker BD, Hofhansl F, Zhou SX, Dieckmann U, Prentice IC. 2022. Towards a unified theory of plant photosynthesis and hydraulics. Nature Plants 8: 1304.
Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV. 2015. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist 205: 1537-1551.
Keller AB, Phillips RP. 2019. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytologist 222: 556-564.
Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, da Costa ACL, Gentine P. 2019. Implementing plant hydraulics in the Community Land Model, v.5. Journal of Advances in Modeling Earth Systems 11: 485-513.
Knox RG, Koven CD, Riley WJ, Walker AP, Wright SJ, Holm JA, Wei X, Fisher RA, Zhu Q, Tang J et al. 2023. Nutrient dynamics in a coupled terrestrial biosphere and land model (ELM-FATES). doi: 10.22541/essoar.167810418.80767445/v1.
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist 203: 863-872.
Kou-Giesbrecht S, Malyshev S, Cano IM, Pacala SW, Shevliakova E, Bytnerowicz TA, Menge DNL. 2021. A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF). Biogeosciences 18: 4143-4183.
Koven CD, Knox RG, Fisher RA, Chambers JQ, Christoffersen BO, Davies SJ, Detto M, Dietze MC, Faybishenko B, Holm J et al. 2020. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17: 3017-3044.
Kummerow J, Castillanos J, Maas M, Larigauderie A. 1990. Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest. Vegetatio 90: 73-80.
Kyker-Snowman E, Lombardozzi DL, Bonan GB, Cheng SJ, Dukes JS, Frey SD, Jacobs EM, McNellis R, Rady JM, Smith NG et al. 2022. Increasing the spatial and temporal impact of ecological research: a roadmap for integrating a novel terrestrial process into an Earth system model. Global Change Biology 28: 665-684.
Langan L, Higgins SI, Scheiter S. 2017. Climate-biomes, pedo-biomes or pyro-biomes: which world view explains the tropical forest-savanna boundary in South America? Journal of Biogeography 44: 2319-2330.
Laughlin DC, Mommer L, Sabatini FM, Bruelheide H, Kuyper TW, McCormack ML, Bergmann J, Freschet GT, Guerrero-Ramirez NR, Iversen CM et al. 2021. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology & Evolution 5: 1123.
Lee RB. 1988. Phosphate influx and extracellular phosphatase activity in barley roots and rose cells. New Phytologist 109: 141-148.
Lekberg Y, Rosendahl S, Michelsen A, Olsson PA. 2013. Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis. Plant and Soil 368: 547-555.
Longo M, Knox RG, Medvigy DM, Levine NM, Dietze MC, Kim Y, Swann ALS, Zhang K, Rollinson CR, Bras RL et al. 2019. The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2-Part 1: model description. Geoscientific Model Development 12: 4309-4346.
Lugli LF, Andersen KM, Aragao L, Cordeiro AL, Cunha HKV, Fuchslueger L, Meir P, Mercado LM, Oblitas E, Quesada CA et al. 2020. Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant and Soil 450: 49-63.
Lugli LF, Rosa JS, Andersen KM, Di Ponzio R, Almeida RV, Pires M, Cordeiro AL, Cunha HFV, Martins NP, Assis RL et al. 2021. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist 230: 116-128.
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO. 2018. Evolutionary history resolves global organization of root functional traits. Nature 555: 94.
Malhi Y, Doughty C, Galbraith D. 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society, B: Biological Sciences 366: 3225-3245.
Marechaux I, Chave J. 2017. An individual-based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecological Monographs 87: 632-664.
Markesteijn L, Poorter L. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97: 311-325.
Martinez Cano I, Shevliakova E, Malyshev S, Wright SJ, Detto M, Pacala SW, Muller-Landau HC. 2020. Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (LM3PPA-TV). Global Change Biology 26: 4478-4494.
Matamala R, Stover DB. 2013. Introduction to a virtual special issue: modeling the hidden half - the root of our problem. New Phytologist 200: 939-942.
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB et al. 2015. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes. New Phytologist 207: 505-518.
Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo YQ, Parton W et al. 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change 5: 528-534.
Medvigy D, Moorcroft PR. 2012. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of the Royal Society, B: Biological Sciences 367: 222-235.
Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR. 2009. Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model v.2. Journal of Geophysical Research: Biogeosciences 114: 812.
Menge DNL, Lichstein JW, Angeles-Perez G. 2014. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95: 2236-2245.
Metcalfe DB, Meir P, Aragao L, da Costa ACL, Braga AP, Goncalves PHL, Silva JD, de Almeida SS, Dawson LA, Malhi Y et al. 2008. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil 311: 189-199.
Meunier F, Verbeeck H, Cowdery B, Schnitzer SA, Smith-Martin CM, Powers JS, Xu XT, Slot M, De Deurwaerder HPT, Detto M et al. 2021. Unraveling the relative role of light and water competition between lianas and trees in tropical forests: a vegetation model analysis. Journal of Ecology 109: 519-540.
Nakhavali MA, Mercado LM, Hartley IP, Sitch S, Cunha FV, di Ponzio R, Lugli LF, Quesada CA, Andersen KM, Chadburn SE et al. 2022. Representation of the phosphorus cycle in the Joint UK land environment simulator (vn5.5_JULES-CNP). Geoscientific Model Development 15: 5241-5269.
Nasto MK, Alvarez-Clare S, Lekberg Y, Sullivan BW, Townsend AR, Cleveland CC. 2014. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecology Letters 17: 1282-1289.
Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FD, Cordoba EC, Fagundes MV, Garcia S et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist 221: 1457-1465.
Oliveira RS, Eller CB, Barros FD, Hirota M, Brum M, Bittencourt P. 2021. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist 230: 904-923.
Olsson PA, Lekberg Y. 2022. A critical review of the use of lipid signature molecules for the quantification of arbuscular mycorrhiza fungi. Soil Biology & Biochemistry 166: 108574.
de Paula MD, Forrest M, Langan L, Bendix J, Homeier J, Velescu A, Wilcke W, Hickler T. 2021. Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist 232: 551-566.
Peh KSH, Lewis SL, Lloyd J. 2011. Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99: 891-898.
Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist 199: 41-51.
POWO. 2023. Plants of the world online. Richmond, UK: Facilitated by the Royal Botanic Gardens, Kew.
Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI. 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8: 1415-1440.
Rasse DP, Rumpel C, Dignac MF. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil 269: 341-356.
Read QD, Henning JA, Sanders NJ. 2017. Intraspecific variation in traits reduces ability of trait-based models to predict community structure. Journal of Vegetation Science 28: 1070-1081.
Reich PB. 2014. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology 102: 275-301.
Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K. 2022. Plant phosphorus-use and -acquisition strategies in Amazonia. New Phytologist 234: 1126-1143.
Rius BF, Darela JP, Fleischer K, Hofhansl F, Blanco CC, Rammig A, Domingues TF, Lapola DM. 2023. Higher functional diversity improves modeling of Amazon forest carbon storage. Ecological Modelling 481: 110323.
Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Penuelas J, Thonicke K. 2015. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology 21: 2711-2725.
Sakschewski B, von Bloh W, Druke M, Sorensson AA, Ruscica R, Langerwisch F, Billing M, Bereswill S, Hirota M, Oliveira RS et al. 2021. Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests. Biogeosciences 18: 4091-4116.
Sampaio EVSB. 1995. Overview of the Brazilian caatinga. In: Medina E, Mooney HA, Bullock SH, eds. Seasonally dry tropical forests. Cambridge, UK: Cambridge University Press, 35-63.
Schaphoff S, von Bloh W, Rammig A, Thonicke K, Biemans H, Forkel M, Gerten D, Heinke J, Jagermeyr J, Knauer J et al. 2018. LPJmL4-a dynamic global vegetation model with managed land - Part 1: model description. Geoscientific Model Development 11: 1343-1375.
Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global vegetation models: learning from community ecology. New Phytologist 198: 957-969.
Schreeg LA, Santiago LS, Wright SJ, Turner BL. 2014. Stem, root, and older leaf N : P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology 95: 2062-2068.
Sheldrake M, Rosenstock NP, Mangan S, Revillini D, Sayer EJ, Olsson PA, Verbruggen E, Tanner EVJ, Turnerd BL, Wright SJ. 2018. Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. ISME Journal 12: 2433-2445.
Shi M, Fisher JB, Brzostek ER, Phillips RP. 2016. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Global Change Biology 22: 1299-1314.
Smith B, Warlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S. 2014. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11: 2027-2054.
Smith-Martin CM, Xu XT, Medvigy D, Schnitzer SA, Powers JS. 2020. Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytologist 226: 714-726.
Sobrado MA, Cuenca G. 1979. Aspects of water-use of deciduous and evergreen species in a tropical dry forest of Venezuela. Acta Científica Venezolana 30: 302-308.
Soper FM, Nasto MK, Osborne BB, Cleveland CC. 2019. Nitrogen fixation and foliar nitrogen do not predict phosphorus acquisition strategies in tropical trees. Journal of Ecology 107: 118-126.
Sousa D, Fisher JB, Galvan FR, Pavlick RP, Cordelli S, Giambelluca TW, Giardina CP, Gilbert GS, Imran-Narahari F, Litton CM et al. 2021. Tree canopies reflect mycorrhizal composition. Geophysical Research Letters 48: 1-9.
Thonicke K, Billing M, von Bloh W, Sakschewski B, Niinemets U, Penuelas J, Cornelissen JHC, Onoda Y, van Bodegom P, Schaepman ME et al. 2020. Simulating functional diversity of European natural forests along climatic gradients. Journal of Biogeography 47: 1069-1085.
Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM. 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21: 2868.
Thum T, Nabel J, Tsuruta A, Aalto T, Dlugokencky EJ, Liski J, Luijkx IT, Markkanen T, Pongratz J, Yoshida Y et al. 2020. Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO2. Biogeosciences 17: 5721-5743.
Ushio M, Fujiki Y, Hidaka A, Kitayama K. 2015. Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Functional Ecology 29: 1235-1245.
Valverde-Barrantes OJ, Authier L, Schimann H, Baraloto C. 2021. Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. American Journal of Botany 108: 744-755.
Vitousek PM, Sanford RL. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17: 137-167.
Vleminckx J, Fortunel C, Valverde-Barrantes O, Paine CET, Engel J, Petronelli P, Dourdain AK, Guevara J, Beroujon S, Baraloto C. 2021. Resolving whole-plant economics from leaf, stem and root traits of 1467 Amazonian tree species. Oikos 130: 1193-1208.
Walker AP, Hanson PJ, De Kauwe MG, Medlyn BE, Zaehle S, Asao S, Dietze M, Hickler T, Huntingford C, Iversen CM et al. 2014. Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: model performance at ambient CO2 concentration. Journal of Geophysical Research: Biogeosciences 119: 937-964.
Wang B, McCormack ML, Ricciuto DM, Yang XJ, Iversen CM. 2023. Embracing fine-root system complexity in terrestrial ecosystem modeling. Global Change Biology 29: 2871-2885.
Wang ZQ, Gong HY, Sardans J, Zhou QP, Deng JM, Niklas KJ, Hu HF, Li YL, Ma ZQ, Mipam TD et al. 2022. Divergent nitrogen and phosphorus allocation strategies in terrestrial plant leaves and fine roots: a global meta-analysis. Journal of Ecology 110: 2745-2758.
Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD. 2015. Root structural and functional dynamics in terrestrial biosphere models-evaluation and recommendations. New Phytologist 205: 59-78.
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ. 2016. Towards a multidimensional root trait framework: a tree root review. New Phytologist 211: 1159-1169.
Weemstra M, Peay KG, Davies SJ, Mohamad M, Itoh A, Tan S, Russo SE. 2020. Lithological constraints on resource economies shape the mycorrhizal composition of a Bornean rain forest. New Phytologist 228: 253-268.
Weemstra M, Valverde-Barrantes O, Fortunel C, Oblitas Mendoza E, Prata E, Vásquez Pilco M, Vicentini A, Vleminckx J, Baraloto C. 2023. Weak phylogenetic and habitat effects on root trait variation of 218 Neotropical tree species. Frontiers in Forests and Global Change 6: 1187127.
Weng ES, Malyshev S, Lichstein JW, Farrior CE, Dybzinski R, Zhang T, Shevliakova E, Pacala SW. 2015. Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences 12: 2655-2694.
Withington JM, Reich PB, Oleksyn J, Eissenstat DM. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs 76: 381-397.
Wullschleger SD, Epstein HE, Box EO, Euskirchen ES, Goswami S, Iversen CM, Kattge J, Norby RJ, van Bodegom PM, Xu XF. 2014. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany 114: 1-16.
Wurzburger N, Wright SJ. 2015. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96: 2137-2146.
Xu C, Christoffersen B, Robbins Z, Knox R, Fisher RA, Chitra-Tarak R, Slot M, Solander K, Kueppers L, Koven C et al. 2023. Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES-HYDRO V1.0). EGUsphere 2023: 1-32.
Xu XT, Medvigy D, Powers JS, Becknell JM, Guan KY. 2016. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytologist 212: 80-95.
Yaffar D, Defrenne CE, Cabugao KG, Kivlin SN, Childs J, Carvajal N, Norby RJ. 2021. Trade-offs in phosphorus acquisition strategies of five common tree species in a tropical forest of Puerto Rico. Frontiers in Forests and Global Change 4: 8191.
Yang XJ, Ricciuto DM, Thornton PE, Shi MY, Xu M, Hoffman F, Norby RJ. 2019. The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon region: a modeling study using ELM v.1. Journal of Geophysical Research - Biogeosciences 124: 3686-3698.
Yang XQ, Wu JP, Chen XZ, Ciais P, Maignan F, Yuan WP, Piao SL, Yang S, Gong FX, Su YX et al. 2021. A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovations 2: 100154.
Yu L, Ahrens B, Wutzler T, Schrumpf M, Zaehle S. 2020. Jena Soil Model (JSM v.1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes. Geoscientific Model Development 13: 783-803.
Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo YQ, Wang YP, El-Masri B, Thornton P et al. 2014. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytologist 202: 803-822.
Zhang Y, Cao J, Lu M, Kardol P, Wang J, Fan G, Kong D. 2023. The origin of bi-dimensionality in plant root traits. Trends in Ecology & Evolution 39: 78-88.
Zhu LQ, Huang RZ, Wang JP, Huang GM, Guan HZ, Lin LJ, Yang MJ, Li YY, Zou XH. 2023. Litter, root, and mycorrhiza input affected soil microbial community structure in schima superba pure forest in subtropical China. Diversity-Basel 15: 82.