New autophagy-modulating lanostane-type triterpenoids from a hallucinogenic poisonous mushroom Gymnopilus orientispectabilis.
Gymnopilus orientispectabilis
Autophagic activity
ECD calculation
Lanostane-type triterpenoids
Structural elucidation
Journal
Archives of pharmacal research
ISSN: 1976-3786
Titre abrégé: Arch Pharm Res
Pays: Korea (South)
ID NLM: 8000036
Informations de publication
Date de publication:
28 Feb 2024
28 Feb 2024
Historique:
received:
08
01
2024
accepted:
16
02
2024
medline:
28
2
2024
pubmed:
28
2
2024
entrez:
28
2
2024
Statut:
aheadofprint
Résumé
Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.
Identifiants
pubmed: 38416389
doi: 10.1007/s12272-024-01486-1
pii: 10.1007/s12272-024-01486-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Research Foundation of Korea
ID : 2019R1A5A2027340
Organisme : National Research Foundation of Korea
ID : 2021R1A2C2007937
Informations de copyright
© 2024. The Pharmaceutical Society of Korea.
Références
Al-Bari MA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N (2021) Targeting autophagy with natural products as a potential therapeutic approach for cancer. Int J Mol Sci 22:9807. https://doi.org/10.3390/ijms22189807
doi: 10.3390/ijms22189807
pubmed: 34575981
pmcid: 8467030
Arpha K, Phosri C, Suwannasai N, Mongkolthanaruk W, Sodngam S (2012) Astraodoric acids A-D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their anti-Mycobacterium tuberculosis H37Ra and cytotoxic activity. J Agric Food Chem 60:9834–9841. https://doi.org/10.1021/jf302433r
doi: 10.1021/jf302433r
pubmed: 22957940
Cho H, Kim KH, Han SH, Kim H-J, Cho I-H, Lee S (2022) Structure determination of heishuixiecaoline A from Valeriana fauriei and its content from different cultivated regions by HPLC/PDA Analysis. Nat Prod Sci 28:181–186. https://doi.org/10.20307/nps.2022.28.4.181
doi: 10.20307/nps.2022.28.4.181
De Bernardi M, Fronza G, Gianotti M, Mellerio G, Vidari G, Vita-Finzi P (1983) Fungal metabolites XIII: new cytotoxic triterpene from Hebeloma species (Basidiomycetes). Tetrahedron Lett 24:1635–1638. https://doi.org/10.1016/S0040-4039(00)81730-X
doi: 10.1016/S0040-4039(00)81730-X
Diedrich C, Grimme S (2003) Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 107:2524–2539. https://doi.org/10.1021/jp0275802
doi: 10.1021/jp0275802
Findlay JA, He Z-Q (1991) Minor constituents of Gymnopilus spectabilis. J Nat Prod 54:184–189. https://doi.org/10.1021/np50073a017
doi: 10.1021/np50073a017
Fu L, Liu C, Zhang J, Yu H (2023) Plant natural products as autophagy modulators to improve potential cancer therapy. Stud Nat Prod Chem 77:339–363. https://doi.org/10.1016/B978-0-323-91294-5.00010-5
doi: 10.1016/B978-0-323-91294-5.00010-5
Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487–511. https://doi.org/10.1038/nrd.2017.22
doi: 10.1038/nrd.2017.22
pubmed: 28529316
pmcid: 5713640
Gill BS, Navgeet MR, Kumar V, Kumar S (2018) Ganoderic acid, lanostanoid triterpene: a key player in apoptosis. Invest New Drugs 36:136–143. https://doi.org/10.1007/s10637-017-0526-0
doi: 10.1007/s10637-017-0526-0
pubmed: 29081024
Grimblat N, Zanardi MM, Sarotti AM (2015) Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem 80:12526–12534. https://doi.org/10.1021/acs.joc.5b02396
doi: 10.1021/acs.joc.5b02396
pubmed: 26580165
Han J, Li L, Zhong J, Tohtaton Z, Ren Q, Han L, Huang X, Yuan T (2016) Officimalonic acids A− H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry 130:193–200. https://doi.org/10.1016/j.phytochem.2016.05.004
doi: 10.1016/j.phytochem.2016.05.004
pubmed: 27216472
Handa N, Yamada T, Tanaka R (2010) An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774–1779. https://doi.org/10.1016/j.phytochem.2010.07.005
doi: 10.1016/j.phytochem.2010.07.005
pubmed: 20691456
Haroon M, Kang SC (2020) Celastrol-mediated autophagy regulation in cancer. Appl Biol Chem 63:1–10. https://doi.org/10.1186/s13765-020-00565-3
doi: 10.1186/s13765-020-00565-3
Jang M, Hara S, Kim G-H, Kim SM, Son S, Kwon M, Ryoo I-J, Seo H, Kim MJ, Kim N-D (2021) Dutomycin induces autophagy and apoptosis by targeting the serine protease inhibitor SERPINB6. ACS Chem Biol 16:360–370. https://doi.org/10.1021/acschembio.0c00889
doi: 10.1021/acschembio.0c00889
pubmed: 33517652
Jayasuriya H, Silverman KC, Zink DL, Jenkins RG, Sanchez M, Pelaez F, Vilella D, Lingham RB, Singh SB (1998) Clavaric acid: a triterpenoid inhibitor of farnesyl-protein transferase from Clavariadelphus truncatus. J Nat Prod 61:1568–1570. https://doi.org/10.1021/np980200c
doi: 10.1021/np980200c
pubmed: 9868169
Kamo T, Hirai N, Matsumoto C, Ohigashi H, Hirota M (2004) Revised chirality of the acyl group of 8′-O-(3-hydroxy-3-methylglutaryl)-8′-hydroxyabscisic acid. Phytochemistry 65:2517–2520. https://doi.org/10.1016/j.phytochem.2004.07.012
doi: 10.1016/j.phytochem.2004.07.012
pubmed: 15381416
Kayano T, Kitamura N, Miyazaki S, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T (2014) Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor. Toxicon 81:23–31. https://doi.org/10.1016/j.toxicon.2014.01.014
doi: 10.1016/j.toxicon.2014.01.014
pubmed: 24491353
Kim KH, Choi SU, Lee KR (2012) Gymnopilin K: a new cytotoxic gymnopilin from Gymnopilus spectabilis. J Antibiot 65:135–137. https://doi.org/10.1038/ja.2011.122
doi: 10.1038/ja.2011.122
Kim KH, Moon E, Choi SU, Kim SY, Lee KR (2013) Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J Nat Prod 76:845–851. https://doi.org/10.1021/np300801x
doi: 10.1021/np300801x
pubmed: 23634786
Lai K-H, Lu M-C, Du Y-C, El-Shazly M, Wu T-Y, Hsu Y-M, Henz A, Yang J-C, Backlund A, Chang F-R (2016) Cytotoxic lanostanoids from Poria cocos. J Nat Prod 79:2805–2813. https://doi.org/10.1021/acs.jnatprod.6b00575
doi: 10.1021/acs.jnatprod.6b00575
pubmed: 27808511
Lee I-K, Cho S-M, Seok S-J, Yun B-S (2008) Chemical constituents of Gymnopilus spectabilis and their antioxidant activity. Mycobiology 36:55–59. https://doi.org/10.4489/MYCO.2008.36.1.055
doi: 10.4489/MYCO.2008.36.1.055
pubmed: 23997609
pmcid: 3755253
Lee S, Lee D, Lee SO, Ryu J-Y, Choi S-Z, Kang KS, Kim KH (2017) Anti-inflammatory activity of the sclerotia of edible fungus, Poria cocos Wolf and their active lanostane triterpenoids. J Funct Foods 32:27–36. https://doi.org/10.1016/j.jff.2017.02.012
doi: 10.1016/j.jff.2017.02.012
Lee S, Lee S, Roh H-S, Song S-S, Ryoo R, Pang C, Baek K-H, Kim KH (2018) Cytotoxic constituents from the sclerotia of Poria cocos against human lung adenocarcinoma cells by inducing mitochondrial apoptosis. Cells 7:116. https://doi.org/10.3390/cells7090116
doi: 10.3390/cells7090116
pubmed: 30149516
pmcid: 6162800
Lee KH, Kim JK, Yu JS, Jeong SY, Choi JH, Kim J-C, Ko Y-J, Kim S-H, Kim KH (2021a) Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch Pharm Res 44:514–524. https://doi.org/10.1007/s12272-021-01329-3
doi: 10.1007/s12272-021-01329-3
pubmed: 33929687
Lee S, Kim CS, Yu JS, Kang H, Yoo MJ, Youn UJ, Ryoo R, Bae HY, Kim KH (2021b) Ergopyrone, a styrylpyrone-fused steroid with a hexacyclic 6/5/6/6/6/5 skeleton from a mushroom Gymnopilus orientispectabilis. Org Lett 23:3315–3319. https://doi.org/10.1021/acs.orglett.1c00790
doi: 10.1021/acs.orglett.1c00790
pubmed: 33826851
Lee BS, So HM, Kim S, Kim JK, Kim J-C, Kang D-M, Ahn M-J, Ko Y-J, Kim KH (2022a) Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Arch Pharm Res. https://doi.org/10.1007/s12272-022-01416-z
doi: 10.1007/s12272-022-01416-z
pubmed: 36564599
pmcid: 9703441
Lee S, Yu JS, Lee SR, Kim KH (2022b) Non-peptide secondary metabolites from poisonous mushrooms: overview of chemistry, bioactivity, and biosynthesis. Nat Prod Rep 39:512–559. https://doi.org/10.1039/D1NP00049G
doi: 10.1039/D1NP00049G
pubmed: 34608478
Lee SR, Lee BS, Yu JS, Kang H, Yoo MJ, Yi SA, Han J-W, Kim S, Kim JK, Kim J-C (2022c) Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J Ginseng Res 46:357–366. https://doi.org/10.1016/j.jgr.2021.09.004
doi: 10.1016/j.jgr.2021.09.004
pubmed: 35600781
Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, Cosford ND (2018) Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci 39:1021–1032. https://doi.org/10.1016/j.tips.2018.10.004
doi: 10.1016/j.tips.2018.10.004
pubmed: 30454769
pmcid: 6349222
Lisiak N, Toton E, Rubis B, Majer B, Rybczynska M (2016) The synthetic oleanane triterpenoid HIMOXOL induces autophagy in breast cancer cells via ERK1/2 MAPK pathway and Beclin-1 up-regulation. Anticancer Agents Med Chem 16:1066–1076. https://doi.org/10.2174/1871520616666160223114104
doi: 10.2174/1871520616666160223114104
pubmed: 26902601
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M (2019) Berberine as a potential autophagy modulator. J Cell Physiol 234:14914–14926. https://doi.org/10.1002/jcp.28325
doi: 10.1002/jcp.28325
pubmed: 30770555
Nozoe S, Takahashi A, Ohta T (1993) Chirality of the 3-hydroxy-3-methylglutaric acid moiety of fasciculic acid A, a calmodulin antagonist isolated from Naematoloma fasciculare. Chem Pharm Bull 41:1738–1742. https://doi.org/10.1248/cpb.41.1738
doi: 10.1248/cpb.41.1738
Passie T, Seifert J, Schneider U, Emrich HM (2002) The pharmacology of psilocybin. Addict Biol 7:357–364. https://doi.org/10.1080/1355621021000005937
doi: 10.1080/1355621021000005937
pubmed: 14578010
Patocka J, Wu R, Nepovimova E, Valis M, Wu W, Kuca K (2021) Chemistry and toxicology of major bioactive substances in Inocybe mushrooms. Int J Mol Sci 22:2218. https://doi.org/10.3390/ijms22042218
doi: 10.3390/ijms22042218
pubmed: 33672330
pmcid: 7926736
Pimjuk P, Phosri C, Wauke T, Mccloskey S (2015) The isolation of two new lanostane triterpenoid derivatives from the edible mushroom Astraeus asiaticus. Phytochem Lett 14:79–83. https://doi.org/10.1016/j.phytol.2015.09.009
doi: 10.1016/j.phytol.2015.09.009
Porter EA, Van Den Bos AA, Kite GC, Veitch NC, Simmonds MS (2012) Flavonol glycosides acylated with 3-hydroxy-3-methylglutaric acid as systematic characters in Rosa. Phytochemistry 81:90–96. https://doi.org/10.1016/j.phytochem.2012.05.006
doi: 10.1016/j.phytochem.2012.05.006
pubmed: 22721781
Rahman MA, Rahman MR, Zaman T, Uddin MS, Islam R, Abdel-Daim MM, Rhim H (2020) Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr Pharm Des 26:772–779. https://doi.org/10.2174/1381612826666200107142541
doi: 10.2174/1381612826666200107142541
pubmed: 31914904
Rios J-L, Andujar I, Recio M-C, Giner R-M (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044. https://doi.org/10.1021/np300412h
doi: 10.1021/np300412h
pubmed: 23092389
Sandargo B, Chepkirui C, Cheng T, Chaverra-Muñoz L, Thongbai B, Stadler M, Hüttel S (2019) Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 37:107344. https://doi.org/10.1016/j.biotechadv.2019.01.011
doi: 10.1016/j.biotechadv.2019.01.011
pubmed: 30738916
Sharma D, Singh V, Singh N (2018) A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini Rev Med Chem 18:1095–1109. https://doi.org/10.2174/1389557517666170927144119
doi: 10.2174/1389557517666170927144119
pubmed: 28971768
Shi XW, Li XJ, Gao JM, Zhang XC (2011) Fasciculols H and I, two lanostane derivatives from Chinese mushroom naematoloma fasciculare. Chem Biodivers 8:1864–1870. https://doi.org/10.1002/cbdv.201000203
doi: 10.1002/cbdv.201000203
pubmed: 22006714
Smith SG, Goodman JM (2010) Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 132:12946–12959. https://doi.org/10.1021/ja105035r
doi: 10.1021/ja105035r
pubmed: 20795713
Srisurichan S, Piapukiew J, Puthong S, Pornpakakul S (2017) Lanostane triterpenoids, spiro-astraodoric acid, and astraodoric acids E and F, from the edible mushroom Astraeus odoratus. Phytochem Lett 21:78–83. https://doi.org/10.1016/j.phytol.2017.05.020
doi: 10.1016/j.phytol.2017.05.020
Suh WS, Lee SR, Kim CS, Moon E, Kim SY, Choi SU, Kang KS, Lee KR, Kim KH (2016) A new monoacylglycerol from the fruiting bodies of Gymnopilus spectabilis. J Chem Res 40:156–159. https://doi.org/10.3184/174751916X145468775259
doi: 10.3184/174751916X145468775259
Suzuki K, Fujimoto H, Yamazaki M (1983) The toxic principles of naematoloma fasciculare. Chem Pharm Bull 31:2176–2178. https://doi.org/10.1248/cpb.31.2176
doi: 10.1248/cpb.31.2176
Taji S, Yamada T, Wada S-I, Tokuda H, Sakuma K, Tanaka R (2008) Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem 43:2373–2379. https://doi.org/10.1016/j.ejmech.2008.01.037
doi: 10.1016/j.ejmech.2008.01.037
pubmed: 18387711
Tanaka M, Hashimoto K, Okuno T, Shirahama H (1993) Neurotoxic oligoisoprenoids of the hallucinogenic mushroom, Gymnopilus spectabilis. Phytochemistry 34:661–664. https://doi.org/10.1016/0031-9422(93)85335-O
doi: 10.1016/0031-9422(93)85335-O
Thorn RG, Malloch DW, Saar I, Lamoureux Y, Nagasawa E, Redhead SA, Margaritescu S, Moncalvo J-M (2020) New species in the Gymnopilus junonius group (Basidiomycota: Agaricales). Botany 98:293–315. https://doi.org/10.1139/cjb-2020-0006
doi: 10.1139/cjb-2020-0006
Wang S-F, Wu M-Y, Cai C-Z, Li M, Lu J-H (2016) Autophagy modulators from traditional Chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol 194:861–876. https://doi.org/10.1016/j.jep.2016.10.069
doi: 10.1016/j.jep.2016.10.069
pubmed: 27793785
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L (2017) Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 22:325–356. https://doi.org/10.1007/s10495-016-1335-1
doi: 10.1007/s10495-016-1335-1
pubmed: 27988811
Yang Y-P, Tasneem S, Daniyal M, Zhang L, Jia Y-Z, Jian Y-Q, Li B, Wang W (2020) Lanostane tetracyclic triterpenoids as important sources for anti-inflammatory drug discovery. World J Tradit Chin Med 6:229–238. https://doi.org/10.4103/wjtcm.wjtcm_17_20
doi: 10.4103/wjtcm.wjtcm_17_20
Yin X, Yang A-A, Gao J-M (2019) Mushroom toxins: chemistry and toxicology. J Agric Food Chem 67:5053–5071. https://doi.org/10.1021/acs.jafc.9b00414
doi: 10.1021/acs.jafc.9b00414
pubmed: 30986058
Yoshikawa K, Kuroboshi M, Ahagon S, Arihara S (2004) Three novel crustulinol esters, saponaceols A—C, from Tricholoma saponaceum. Chem Pharm Bull 52:886–888. https://doi.org/10.1248/cpb.52.886
doi: 10.1248/cpb.52.886
Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S (2005) Lanostane triterpenoids and triterpene glycosides from the fruit body of fomitopsis p inicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod 68:69–73. https://doi.org/10.1021/np040130b
doi: 10.1021/np040130b
pubmed: 15679320
Yu JS, Jeong SY, Li C, Oh T, Kwon M, Ahn JS, Ko S-K, Ko Y-J, Cao S, Kim KH (2022) New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2, 3-dioxygenase 1 (IDO1). Arch Pharm Res 45:105–113. https://doi.org/10.1007/s12272-022-01372-8
doi: 10.1007/s12272-022-01372-8
pubmed: 35201589
Zhang S-B, Li Z-H, Stadler M, Chen H-P, Huang Y, Gan X-Q, Feng T, Liu J-K (2018) Lanostane triterpenoids from Tricholoma pardinum with NO production inhibitory and cytotoxic activities. Phytochemistry 152:105–112. https://doi.org/10.1016/j.phytochem.2018.05.002
doi: 10.1016/j.phytochem.2018.05.002
pubmed: 29758519