New autophagy-modulating lanostane-type triterpenoids from a hallucinogenic poisonous mushroom Gymnopilus orientispectabilis.

Gymnopilus orientispectabilis Autophagic activity ECD calculation Lanostane-type triterpenoids Structural elucidation

Journal

Archives of pharmacal research
ISSN: 1976-3786
Titre abrégé: Arch Pharm Res
Pays: Korea (South)
ID NLM: 8000036

Informations de publication

Date de publication:
28 Feb 2024
Historique:
received: 08 01 2024
accepted: 16 02 2024
medline: 28 2 2024
pubmed: 28 2 2024
entrez: 28 2 2024
Statut: aheadofprint

Résumé

Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.

Identifiants

pubmed: 38416389
doi: 10.1007/s12272-024-01486-1
pii: 10.1007/s12272-024-01486-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Research Foundation of Korea
ID : 2019R1A5A2027340
Organisme : National Research Foundation of Korea
ID : 2021R1A2C2007937

Informations de copyright

© 2024. The Pharmaceutical Society of Korea.

Références

Al-Bari MA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N (2021) Targeting autophagy with natural products as a potential therapeutic approach for cancer. Int J Mol Sci 22:9807. https://doi.org/10.3390/ijms22189807
doi: 10.3390/ijms22189807 pubmed: 34575981 pmcid: 8467030
Arpha K, Phosri C, Suwannasai N, Mongkolthanaruk W, Sodngam S (2012) Astraodoric acids A-D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their anti-Mycobacterium tuberculosis H37Ra and cytotoxic activity. J Agric Food Chem 60:9834–9841. https://doi.org/10.1021/jf302433r
doi: 10.1021/jf302433r pubmed: 22957940
Cho H, Kim KH, Han SH, Kim H-J, Cho I-H, Lee S (2022) Structure determination of heishuixiecaoline A from Valeriana fauriei and its content from different cultivated regions by HPLC/PDA Analysis. Nat Prod Sci 28:181–186. https://doi.org/10.20307/nps.2022.28.4.181
doi: 10.20307/nps.2022.28.4.181
De Bernardi M, Fronza G, Gianotti M, Mellerio G, Vidari G, Vita-Finzi P (1983) Fungal metabolites XIII: new cytotoxic triterpene from Hebeloma species (Basidiomycetes). Tetrahedron Lett 24:1635–1638. https://doi.org/10.1016/S0040-4039(00)81730-X
doi: 10.1016/S0040-4039(00)81730-X
Diedrich C, Grimme S (2003) Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 107:2524–2539. https://doi.org/10.1021/jp0275802
doi: 10.1021/jp0275802
Findlay JA, He Z-Q (1991) Minor constituents of Gymnopilus spectabilis. J Nat Prod 54:184–189. https://doi.org/10.1021/np50073a017
doi: 10.1021/np50073a017
Fu L, Liu C, Zhang J, Yu H (2023) Plant natural products as autophagy modulators to improve potential cancer therapy. Stud Nat Prod Chem 77:339–363. https://doi.org/10.1016/B978-0-323-91294-5.00010-5
doi: 10.1016/B978-0-323-91294-5.00010-5
Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487–511. https://doi.org/10.1038/nrd.2017.22
doi: 10.1038/nrd.2017.22 pubmed: 28529316 pmcid: 5713640
Gill BS, Navgeet MR, Kumar V, Kumar S (2018) Ganoderic acid, lanostanoid triterpene: a key player in apoptosis. Invest New Drugs 36:136–143. https://doi.org/10.1007/s10637-017-0526-0
doi: 10.1007/s10637-017-0526-0 pubmed: 29081024
Grimblat N, Zanardi MM, Sarotti AM (2015) Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem 80:12526–12534. https://doi.org/10.1021/acs.joc.5b02396
doi: 10.1021/acs.joc.5b02396 pubmed: 26580165
Han J, Li L, Zhong J, Tohtaton Z, Ren Q, Han L, Huang X, Yuan T (2016) Officimalonic acids A− H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry 130:193–200. https://doi.org/10.1016/j.phytochem.2016.05.004
doi: 10.1016/j.phytochem.2016.05.004 pubmed: 27216472
Handa N, Yamada T, Tanaka R (2010) An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774–1779. https://doi.org/10.1016/j.phytochem.2010.07.005
doi: 10.1016/j.phytochem.2010.07.005 pubmed: 20691456
Haroon M, Kang SC (2020) Celastrol-mediated autophagy regulation in cancer. Appl Biol Chem 63:1–10. https://doi.org/10.1186/s13765-020-00565-3
doi: 10.1186/s13765-020-00565-3
Jang M, Hara S, Kim G-H, Kim SM, Son S, Kwon M, Ryoo I-J, Seo H, Kim MJ, Kim N-D (2021) Dutomycin induces autophagy and apoptosis by targeting the serine protease inhibitor SERPINB6. ACS Chem Biol 16:360–370. https://doi.org/10.1021/acschembio.0c00889
doi: 10.1021/acschembio.0c00889 pubmed: 33517652
Jayasuriya H, Silverman KC, Zink DL, Jenkins RG, Sanchez M, Pelaez F, Vilella D, Lingham RB, Singh SB (1998) Clavaric acid: a triterpenoid inhibitor of farnesyl-protein transferase from Clavariadelphus truncatus. J Nat Prod 61:1568–1570. https://doi.org/10.1021/np980200c
doi: 10.1021/np980200c pubmed: 9868169
Kamo T, Hirai N, Matsumoto C, Ohigashi H, Hirota M (2004) Revised chirality of the acyl group of 8′-O-(3-hydroxy-3-methylglutaryl)-8′-hydroxyabscisic acid. Phytochemistry 65:2517–2520. https://doi.org/10.1016/j.phytochem.2004.07.012
doi: 10.1016/j.phytochem.2004.07.012 pubmed: 15381416
Kayano T, Kitamura N, Miyazaki S, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T (2014) Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor. Toxicon 81:23–31. https://doi.org/10.1016/j.toxicon.2014.01.014
doi: 10.1016/j.toxicon.2014.01.014 pubmed: 24491353
Kim KH, Choi SU, Lee KR (2012) Gymnopilin K: a new cytotoxic gymnopilin from Gymnopilus spectabilis. J Antibiot 65:135–137. https://doi.org/10.1038/ja.2011.122
doi: 10.1038/ja.2011.122
Kim KH, Moon E, Choi SU, Kim SY, Lee KR (2013) Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J Nat Prod 76:845–851. https://doi.org/10.1021/np300801x
doi: 10.1021/np300801x pubmed: 23634786
Lai K-H, Lu M-C, Du Y-C, El-Shazly M, Wu T-Y, Hsu Y-M, Henz A, Yang J-C, Backlund A, Chang F-R (2016) Cytotoxic lanostanoids from Poria cocos. J Nat Prod 79:2805–2813. https://doi.org/10.1021/acs.jnatprod.6b00575
doi: 10.1021/acs.jnatprod.6b00575 pubmed: 27808511
Lee I-K, Cho S-M, Seok S-J, Yun B-S (2008) Chemical constituents of Gymnopilus spectabilis and their antioxidant activity. Mycobiology 36:55–59. https://doi.org/10.4489/MYCO.2008.36.1.055
doi: 10.4489/MYCO.2008.36.1.055 pubmed: 23997609 pmcid: 3755253
Lee S, Lee D, Lee SO, Ryu J-Y, Choi S-Z, Kang KS, Kim KH (2017) Anti-inflammatory activity of the sclerotia of edible fungus, Poria cocos Wolf and their active lanostane triterpenoids. J Funct Foods 32:27–36. https://doi.org/10.1016/j.jff.2017.02.012
doi: 10.1016/j.jff.2017.02.012
Lee S, Lee S, Roh H-S, Song S-S, Ryoo R, Pang C, Baek K-H, Kim KH (2018) Cytotoxic constituents from the sclerotia of Poria cocos against human lung adenocarcinoma cells by inducing mitochondrial apoptosis. Cells 7:116. https://doi.org/10.3390/cells7090116
doi: 10.3390/cells7090116 pubmed: 30149516 pmcid: 6162800
Lee KH, Kim JK, Yu JS, Jeong SY, Choi JH, Kim J-C, Ko Y-J, Kim S-H, Kim KH (2021a) Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch Pharm Res 44:514–524. https://doi.org/10.1007/s12272-021-01329-3
doi: 10.1007/s12272-021-01329-3 pubmed: 33929687
Lee S, Kim CS, Yu JS, Kang H, Yoo MJ, Youn UJ, Ryoo R, Bae HY, Kim KH (2021b) Ergopyrone, a styrylpyrone-fused steroid with a hexacyclic 6/5/6/6/6/5 skeleton from a mushroom Gymnopilus orientispectabilis. Org Lett 23:3315–3319. https://doi.org/10.1021/acs.orglett.1c00790
doi: 10.1021/acs.orglett.1c00790 pubmed: 33826851
Lee BS, So HM, Kim S, Kim JK, Kim J-C, Kang D-M, Ahn M-J, Ko Y-J, Kim KH (2022a) Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Arch Pharm Res. https://doi.org/10.1007/s12272-022-01416-z
doi: 10.1007/s12272-022-01416-z pubmed: 36564599 pmcid: 9703441
Lee S, Yu JS, Lee SR, Kim KH (2022b) Non-peptide secondary metabolites from poisonous mushrooms: overview of chemistry, bioactivity, and biosynthesis. Nat Prod Rep 39:512–559. https://doi.org/10.1039/D1NP00049G
doi: 10.1039/D1NP00049G pubmed: 34608478
Lee SR, Lee BS, Yu JS, Kang H, Yoo MJ, Yi SA, Han J-W, Kim S, Kim JK, Kim J-C (2022c) Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J Ginseng Res 46:357–366. https://doi.org/10.1016/j.jgr.2021.09.004
doi: 10.1016/j.jgr.2021.09.004 pubmed: 35600781
Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, Cosford ND (2018) Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci 39:1021–1032. https://doi.org/10.1016/j.tips.2018.10.004
doi: 10.1016/j.tips.2018.10.004 pubmed: 30454769 pmcid: 6349222
Lisiak N, Toton E, Rubis B, Majer B, Rybczynska M (2016) The synthetic oleanane triterpenoid HIMOXOL induces autophagy in breast cancer cells via ERK1/2 MAPK pathway and Beclin-1 up-regulation. Anticancer Agents Med Chem 16:1066–1076. https://doi.org/10.2174/1871520616666160223114104
doi: 10.2174/1871520616666160223114104 pubmed: 26902601
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M (2019) Berberine as a potential autophagy modulator. J Cell Physiol 234:14914–14926. https://doi.org/10.1002/jcp.28325
doi: 10.1002/jcp.28325 pubmed: 30770555
Nozoe S, Takahashi A, Ohta T (1993) Chirality of the 3-hydroxy-3-methylglutaric acid moiety of fasciculic acid A, a calmodulin antagonist isolated from Naematoloma fasciculare. Chem Pharm Bull 41:1738–1742. https://doi.org/10.1248/cpb.41.1738
doi: 10.1248/cpb.41.1738
Passie T, Seifert J, Schneider U, Emrich HM (2002) The pharmacology of psilocybin. Addict Biol 7:357–364. https://doi.org/10.1080/1355621021000005937
doi: 10.1080/1355621021000005937 pubmed: 14578010
Patocka J, Wu R, Nepovimova E, Valis M, Wu W, Kuca K (2021) Chemistry and toxicology of major bioactive substances in Inocybe mushrooms. Int J Mol Sci 22:2218. https://doi.org/10.3390/ijms22042218
doi: 10.3390/ijms22042218 pubmed: 33672330 pmcid: 7926736
Pimjuk P, Phosri C, Wauke T, Mccloskey S (2015) The isolation of two new lanostane triterpenoid derivatives from the edible mushroom Astraeus asiaticus. Phytochem Lett 14:79–83. https://doi.org/10.1016/j.phytol.2015.09.009
doi: 10.1016/j.phytol.2015.09.009
Porter EA, Van Den Bos AA, Kite GC, Veitch NC, Simmonds MS (2012) Flavonol glycosides acylated with 3-hydroxy-3-methylglutaric acid as systematic characters in Rosa. Phytochemistry 81:90–96. https://doi.org/10.1016/j.phytochem.2012.05.006
doi: 10.1016/j.phytochem.2012.05.006 pubmed: 22721781
Rahman MA, Rahman MR, Zaman T, Uddin MS, Islam R, Abdel-Daim MM, Rhim H (2020) Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr Pharm Des 26:772–779. https://doi.org/10.2174/1381612826666200107142541
doi: 10.2174/1381612826666200107142541 pubmed: 31914904
Rios J-L, Andujar I, Recio M-C, Giner R-M (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044. https://doi.org/10.1021/np300412h
doi: 10.1021/np300412h pubmed: 23092389
Sandargo B, Chepkirui C, Cheng T, Chaverra-Muñoz L, Thongbai B, Stadler M, Hüttel S (2019) Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 37:107344. https://doi.org/10.1016/j.biotechadv.2019.01.011
doi: 10.1016/j.biotechadv.2019.01.011 pubmed: 30738916
Sharma D, Singh V, Singh N (2018) A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini Rev Med Chem 18:1095–1109. https://doi.org/10.2174/1389557517666170927144119
doi: 10.2174/1389557517666170927144119 pubmed: 28971768
Shi XW, Li XJ, Gao JM, Zhang XC (2011) Fasciculols H and I, two lanostane derivatives from Chinese mushroom naematoloma fasciculare. Chem Biodivers 8:1864–1870. https://doi.org/10.1002/cbdv.201000203
doi: 10.1002/cbdv.201000203 pubmed: 22006714
Smith SG, Goodman JM (2010) Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 132:12946–12959. https://doi.org/10.1021/ja105035r
doi: 10.1021/ja105035r pubmed: 20795713
Srisurichan S, Piapukiew J, Puthong S, Pornpakakul S (2017) Lanostane triterpenoids, spiro-astraodoric acid, and astraodoric acids E and F, from the edible mushroom Astraeus odoratus. Phytochem Lett 21:78–83. https://doi.org/10.1016/j.phytol.2017.05.020
doi: 10.1016/j.phytol.2017.05.020
Suh WS, Lee SR, Kim CS, Moon E, Kim SY, Choi SU, Kang KS, Lee KR, Kim KH (2016) A new monoacylglycerol from the fruiting bodies of Gymnopilus spectabilis. J Chem Res 40:156–159. https://doi.org/10.3184/174751916X145468775259
doi: 10.3184/174751916X145468775259
Suzuki K, Fujimoto H, Yamazaki M (1983) The toxic principles of naematoloma fasciculare. Chem Pharm Bull 31:2176–2178. https://doi.org/10.1248/cpb.31.2176
doi: 10.1248/cpb.31.2176
Taji S, Yamada T, Wada S-I, Tokuda H, Sakuma K, Tanaka R (2008) Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem 43:2373–2379. https://doi.org/10.1016/j.ejmech.2008.01.037
doi: 10.1016/j.ejmech.2008.01.037 pubmed: 18387711
Tanaka M, Hashimoto K, Okuno T, Shirahama H (1993) Neurotoxic oligoisoprenoids of the hallucinogenic mushroom, Gymnopilus spectabilis. Phytochemistry 34:661–664. https://doi.org/10.1016/0031-9422(93)85335-O
doi: 10.1016/0031-9422(93)85335-O
Thorn RG, Malloch DW, Saar I, Lamoureux Y, Nagasawa E, Redhead SA, Margaritescu S, Moncalvo J-M (2020) New species in the Gymnopilus junonius group (Basidiomycota: Agaricales). Botany 98:293–315. https://doi.org/10.1139/cjb-2020-0006
doi: 10.1139/cjb-2020-0006
Wang S-F, Wu M-Y, Cai C-Z, Li M, Lu J-H (2016) Autophagy modulators from traditional Chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol 194:861–876. https://doi.org/10.1016/j.jep.2016.10.069
doi: 10.1016/j.jep.2016.10.069 pubmed: 27793785
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L (2017) Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 22:325–356. https://doi.org/10.1007/s10495-016-1335-1
doi: 10.1007/s10495-016-1335-1 pubmed: 27988811
Yang Y-P, Tasneem S, Daniyal M, Zhang L, Jia Y-Z, Jian Y-Q, Li B, Wang W (2020) Lanostane tetracyclic triterpenoids as important sources for anti-inflammatory drug discovery. World J Tradit Chin Med 6:229–238. https://doi.org/10.4103/wjtcm.wjtcm_17_20
doi: 10.4103/wjtcm.wjtcm_17_20
Yin X, Yang A-A, Gao J-M (2019) Mushroom toxins: chemistry and toxicology. J Agric Food Chem 67:5053–5071. https://doi.org/10.1021/acs.jafc.9b00414
doi: 10.1021/acs.jafc.9b00414 pubmed: 30986058
Yoshikawa K, Kuroboshi M, Ahagon S, Arihara S (2004) Three novel crustulinol esters, saponaceols A—C, from Tricholoma saponaceum. Chem Pharm Bull 52:886–888. https://doi.org/10.1248/cpb.52.886
doi: 10.1248/cpb.52.886
Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S (2005) Lanostane triterpenoids and triterpene glycosides from the fruit body of fomitopsis p inicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod 68:69–73. https://doi.org/10.1021/np040130b
doi: 10.1021/np040130b pubmed: 15679320
Yu JS, Jeong SY, Li C, Oh T, Kwon M, Ahn JS, Ko S-K, Ko Y-J, Cao S, Kim KH (2022) New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2, 3-dioxygenase 1 (IDO1). Arch Pharm Res 45:105–113. https://doi.org/10.1007/s12272-022-01372-8
doi: 10.1007/s12272-022-01372-8 pubmed: 35201589
Zhang S-B, Li Z-H, Stadler M, Chen H-P, Huang Y, Gan X-Q, Feng T, Liu J-K (2018) Lanostane triterpenoids from Tricholoma pardinum with NO production inhibitory and cytotoxic activities. Phytochemistry 152:105–112. https://doi.org/10.1016/j.phytochem.2018.05.002
doi: 10.1016/j.phytochem.2018.05.002 pubmed: 29758519

Auteurs

Seulah Lee (S)

School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Korea.

Mina Jang (M)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.
Daegu-Gyeongbuk Medical Innovation Foundation, New Drug Development Center, Daegu, 41061, Korea.

Rhim Ryoo (R)

Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon, 16631, Korea.

Jongtae Roh (J)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.
KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Korea.

Sung-Kyun Ko (SK)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. ksk1230@kribb.re.kr.
KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Korea. ksk1230@kribb.re.kr.

Ki Hyun Kim (KH)

School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea. khkim83@skku.edu.

Classifications MeSH