Cellular reprogramming as a tool to model human aging in a dish.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 Feb 2024
28 Feb 2024
Historique:
received:
29
09
2023
accepted:
12
02
2024
medline:
29
2
2024
pubmed:
29
2
2024
entrez:
28
2
2024
Statut:
epublish
Résumé
The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.
Identifiants
pubmed: 38418829
doi: 10.1038/s41467-024-46004-5
pii: 10.1038/s41467-024-46004-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1816Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
ID : AG056306
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
ID : AG062429
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 952266
Informations de copyright
© 2024. The Author(s).
Références
Brunet, A. Old and new models for the study of human ageing. Nat. Rev. Mol. Cell Biol. 21, 491–493 (2020).
pubmed: 32572179
pmcid: 7531489
doi: 10.1038/s41580-020-0266-4
Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).
pubmed: 9252323
doi: 10.1126/science.277.5328.942
Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).
pubmed: 12939617
doi: 10.1038/nature01960
Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).
pubmed: 24317695
doi: 10.1038/nature12789
Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).
pubmed: 26150497
pmcid: 4522793
doi: 10.1073/pnas.1506264112
Hamczyk, M. R., del Campo, L. & Andres, V. Aging in the cardiovascular system: lessons from hutchinson-gilford progeria syndrome. Annu Rev. Physiol. 80, 27–48 (2018).
pubmed: 28934587
doi: 10.1146/annurev-physiol-021317-121454
Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274–278 (2014).
pubmed: 25307057
pmcid: 4366007
doi: 10.1038/nature13800
Atchison, L. et al. iPSC-derived endothelial cells affect vascular function in a tissue-engineered blood vessel model of Hutchinson-Gilford progeria syndrome. Stem Cell Rep. 14, 325–337 (2020).
doi: 10.1016/j.stemcr.2020.01.005
Pitrez, P. R. et al. Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nat. Commun. 11, 4110 (2020).
pubmed: 32807790
pmcid: 7431909
doi: 10.1038/s41467-020-17901-2
Fernandez-Rebollo, E. et al. Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells. Stem Cell Rep. 14, 201–209 (2020).
doi: 10.1016/j.stemcr.2019.12.012
Ozcebe, S. G., Bahcecioglu, G., Yue, X. S. & Zorlutuna, P. Effect of cellular and ECM aging on human iPSC-derived cardiomyocyte performance, maturity and senescence. Biomaterials 268, 120554 (2021).
pubmed: 33296796
doi: 10.1016/j.biomaterials.2020.120554
Mertens, J. et al. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients. Cell Stem Cell 28, 1533–1548.e1536 (2021).
pubmed: 33910058
pmcid: 8423435
doi: 10.1016/j.stem.2021.04.004
Drouin-Ouellet, J. et al. Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson’s disease. Stem Cell Rep. 17, 2203–2219 (2022).
doi: 10.1016/j.stemcr.2022.08.010
Aguado, J. et al. Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids. Aging Cell 20, e13468 (2021).
pubmed: 34459078
pmcid: 8441292
doi: 10.1111/acel.13468
Herdy, J. R. et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease. Cell Stem Cell 29, 1637–1652.e1636 (2022).
pubmed: 36459967
pmcid: 10093780
doi: 10.1016/j.stem.2022.11.010
Gatto, N. et al. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell 20, e13281 (2021).
pubmed: 33314575
doi: 10.1111/acel.13281
Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 1096–1106 (2021).
pubmed: 36846190
pmcid: 9957516
doi: 10.1038/s43587-021-00150-3
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 186, 243–278 (2023).
pubmed: 36599349
doi: 10.1016/j.cell.2022.11.001
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838
pmcid: 3836174
doi: 10.1016/j.cell.2013.05.039
Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).
pubmed: 38057571
pmcid: 10700136
doi: 10.1038/s41586-023-06802-1
Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct. Target Ther. 7, 391 (2022).
pubmed: 36522308
pmcid: 9755275
doi: 10.1038/s41392-022-01251-0
Yazdanyar, A. & Newman, A. B. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin. Geriatr. Med 25, 563–577 (2009).
pubmed: 19944261
pmcid: 2797320
doi: 10.1016/j.cger.2009.07.007
Ugai, T. et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat. Rev. Clin. Oncol. 19, 656–673 (2022).
pubmed: 36068272
pmcid: 9509459
doi: 10.1038/s41571-022-00672-8
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).
pubmed: 13905658
doi: 10.1016/0014-4827(61)90192-6
Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).
pubmed: 17409418
doi: 10.1158/0008-5472.CAN-06-3452
Liberale, L. et al. Inflammation, aging, and cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 837–847 (2022).
pubmed: 35210039
pmcid: 8881676
doi: 10.1016/j.jacc.2021.12.017
Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003).
pubmed: 12714972
pmcid: 10540076
doi: 10.1038/nature01629
De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 300, 2055 (2003).
pubmed: 12702809
doi: 10.1126/science.1084125
Pitrez, P. R., Rosa, S. C., Praca, C. & Ferreira, L. Vascular disease modeling using induced pluripotent stem cells: Focus in Hutchinson-Gilford Progeria Syndrome. Biochem. Biophys. Res. Commun. 473, 710–718 (2016).
pubmed: 26474704
doi: 10.1016/j.bbrc.2015.10.014
Oshima, J., Sidorova, J. M. & Monnat, R. J. Jr Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev. 33, 105–114 (2017).
pubmed: 26993153
doi: 10.1016/j.arr.2016.03.002
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).
pubmed: 24138928
pmcid: 4015143
doi: 10.1186/gb-2013-14-10-r115
Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).
pubmed: 37024597
doi: 10.1038/s41591-023-02296-6
Constantinides, C. et al. Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium. Mol. Psychiatry 28, 1201–1209 (2023).
pubmed: 36494461
doi: 10.1038/s41380-022-01897-w
Yang, R. et al. A DNA methylation clock associated with age-related illnesses and mortality is accelerated in men with combat PTSD. Mol. Psychiatry 26, 4999–5009 (2021).
pubmed: 32382136
doi: 10.1038/s41380-020-0755-z
Fries, G. R. et al. Accelerated aging in bipolar disorder: a comprehensive review of molecular findings and their clinical implications. Neurosci. Biobehav Rev. 112, 107–116 (2020).
pubmed: 32018037
doi: 10.1016/j.neubiorev.2020.01.035
Singh, V. K., Kalsan, M., Kumar, N., Saini, A. & Chandra, R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol. 3, 2 (2015).
pubmed: 25699255
pmcid: 4313779
doi: 10.3389/fcell.2015.00002
Lo Sardo, V. et al. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 35, 69–74 (2017).
pubmed: 27941802
doi: 10.1038/nbt.3749
Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).
pubmed: 22056670
pmcid: 3219229
doi: 10.1101/gad.173922.111
Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).
pubmed: 24315443
pmcid: 4153390
doi: 10.1016/j.stem.2013.11.006
Vera, E., Bosco, N. & Studer, L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation. Cell Rep. 17, 1184–1192 (2016).
pubmed: 27760320
pmcid: 5089807
doi: 10.1016/j.celrep.2016.09.062
Acun, A., Nguyen, T. D. & Zorlutuna, P. In vitro aged, hiPSC-origin engineered heart tissue models with age-dependent functional deterioration to study myocardial infarction. Acta Biomater. 94, 372–391 (2019).
pubmed: 31146032
pmcid: 6779061
doi: 10.1016/j.actbio.2019.05.064
Odawara, A., Katoh, H., Matsuda, N. & Suzuki, I. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci. Rep. 6, 26181 (2016).
pubmed: 27188845
pmcid: 4870631
doi: 10.1038/srep26181
Ebert, A. et al. Proteasome-dependent regulation of distinct metabolic states during long-term culture of human iPSC-derived cardiomyocytes. Circ. Res 125, 90–103 (2019).
pubmed: 31104567
pmcid: 6613799
doi: 10.1161/CIRCRESAHA.118.313973
Acun, A. & Zorlutuna, P. CRISPR/Cas9 edited induced pluripotent stem cell-based vascular tissues to model aging and disease-dependent impairment. Tissue Eng. Part A 25, 759–772 (2019).
pubmed: 30704346
pmcid: 6535964
doi: 10.1089/ten.tea.2018.0271
Sacchetto, C., Vitiello, L., de Windt, L. J., Rampazzo, A. & Calore, M. Modeling cardiovascular diseases with hiPSC-derived cardiomyocytes in 2D and 3D cultures. Int J. Mol. Sci. 21, 3404 (2020).
pubmed: 32403456
pmcid: 7246991
doi: 10.3390/ijms21093404
Soria-Valles, C. & Lopez-Otin, C. iPSCs: on the road to reprogramming aging. Trends Mol. Med. 22, 713–724 (2016).
pubmed: 27286740
doi: 10.1016/j.molmed.2016.05.010
Chang, A. C. Y. et al. Telomere shortening is a hallmark of genetic cardiomyopathies. Proc. Natl Acad. Sci. USA 115, 9276–9281 (2018).
pubmed: 30150400
pmcid: 6140486
doi: 10.1073/pnas.1714538115
Lee, J. et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 572, 335–340 (2019).
pubmed: 31316208
pmcid: 6779479
doi: 10.1038/s41586-019-1406-x
Reinhardt, P. et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12, 354–367 (2013).
pubmed: 23472874
doi: 10.1016/j.stem.2013.01.008
Seibler, P. et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31, 5970–5976 (2011).
pubmed: 21508222
pmcid: 3091622
doi: 10.1523/JNEUROSCI.4441-10.2011
Rakovic, A. et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J. Biol. Chem. 288, 2223–2237 (2013).
pubmed: 23212910
doi: 10.1074/jbc.M112.391680
Nekrasov, E. D. et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 11, 27 (2016).
pubmed: 27080129
pmcid: 4832474
doi: 10.1186/s13024-016-0092-5
Koch, P. et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480, 543–546 (2011).
pubmed: 22113611
doi: 10.1038/nature10671
Fathi, A. et al. Chemically induced senescence in human stem cell-derived neurons promotes phenotypic presentation of neurodegeneration. Aging Cell 21, e13541 (2022).
pubmed: 34953016
doi: 10.1111/acel.13541
Schwab, A. J. et al. Decreased sirtuin deacetylase activity in LRRK2 G2019S iPSC-derived dopaminergic neurons. Stem Cell Rep. 9, 1839–1852 (2017).
doi: 10.1016/j.stemcr.2017.10.010
Sanchez-Danes, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol. Med. 4, 380–395 (2012).
pubmed: 22407749
pmcid: 3403296
doi: 10.1002/emmm.201200215
Cornacchia, D. & Studer, L. Back and forth in time: Directing age in iPSC-derived lineages. Brain Res. 1656, 14–26 (2017).
pubmed: 26592774
doi: 10.1016/j.brainres.2015.11.013
Mertens, J., Reid, D., Lau, S., Kim, Y. & Gage, F. H. Aging in a dish: iPSC-derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases. Annu. Rev. Genet. 52, 271–293 (2018).
pubmed: 30208291
pmcid: 6415910
doi: 10.1146/annurev-genet-120417-031534
Gordon, L. B. et al. Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA 319, 1687–1695 (2018).
pubmed: 29710166
pmcid: 5933395
doi: 10.1001/jama.2018.3264
Revechon, G. et al. Rare progerin-expressing preadipocytes and adipocytes contribute to tissue depletion over time. Sci. Rep. 7, 4405 (2017).
pubmed: 28667315
pmcid: 5493617
doi: 10.1038/s41598-017-04492-0
Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221–225 (2011).
pubmed: 21346760
pmcid: 3088088
doi: 10.1038/nature09879
Ribas, J. et al. Biomechanical strain exacerbates inflammation on a progeria-on-a-chip model. Small 13 (2017).
Xu, Q. et al. Vascular senescence in progeria: role of endothelial dysfunction. Eur. Heart J. Open 2, oeac047 (2022).
pubmed: 36117952
pmcid: 9472787
doi: 10.1093/ehjopen/oeac047
Estronca, L. et al. Induced pluripotent stem cell-derived vascular networks to screen nano-bio interactions. Nanoscale Horiz. 6, 245–259 (2021).
pubmed: 33576750
doi: 10.1039/D0NH00550A
Matrone, G. et al. Dysfunction of iPSC-derived endothelial cells in human Hutchinson-Gilford progeria syndrome. Cell Cycle 18, 2495–2508 (2019).
pubmed: 31411525
pmcid: 6738911
doi: 10.1080/15384101.2019.1651587
Lo Cicero, A. et al. Pathological modelling of pigmentation disorders associated with Hutchinson-Gilford Progeria Syndrome (HGPS) revealed an impaired melanogenesis pathway in iPS-derived melanocytes. Sci. Rep. 8, 9112 (2018).
pubmed: 29904107
pmcid: 6002548
doi: 10.1038/s41598-018-27165-y
Nissan, X. et al. Unique preservation of neural cells in Hutchinson- Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep. 2, 1–9 (2012).
pubmed: 22840390
doi: 10.1016/j.celrep.2012.05.015
Xiong, Z. M., LaDana, C., Wu, D. & Cao, K. An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells. Aging (Albany NY) 5, 288–303 (2013).
pubmed: 23596277
doi: 10.18632/aging.100550
Blondel, S. et al. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell Death Dis. 7, e2105 (2016).
pubmed: 26890144
pmcid: 5399184
doi: 10.1038/cddis.2015.374
Egesipe, A. L. et al. Metformin decreases progerin expression and alleviates pathological defects of Hutchinson-Gilford progeria syndrome cells. NPJ Aging Mech. Dis. 2, 16026 (2016).
pubmed: 28721276
pmcid: 5515002
doi: 10.1038/npjamd.2016.26
Ivanovska, I. L. et al. Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017).
pubmed: 28566555
pmcid: 5541850
doi: 10.1091/mbc.e17-01-0010
Pacheco, L. M. et al. Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Aging (Albany NY) 6, 1049–1063 (2014).
pubmed: 25567453
doi: 10.18632/aging.100709
Cho, S. et al. Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A,C in iPS-derived mesenchymal stem cells. Nucleus 9, 230–245 (2018).
pubmed: 29619860
pmcid: 5973135
doi: 10.1080/19491034.2018.1460185
Studer, L., Vera, E. & Cornacchia, D. Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16, 591–600 (2015).
pubmed: 26046759
pmcid: 4508309
doi: 10.1016/j.stem.2015.05.004
Blondel, S. et al. Induced pluripotent stem cells reveal functional differences between drugs currently investigated in patients with hutchinson-gilford progeria syndrome. Stem Cells Transl. Med. 3, 510–519 (2014).
pubmed: 24598781
pmcid: 3973719
doi: 10.5966/sctm.2013-0168
Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).
pubmed: 26456686
pmcid: 5929130
doi: 10.1016/j.stem.2015.09.001
Huh, C. J. et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife 5, e18648 (2016).
pubmed: 27644593
pmcid: 5067114
doi: 10.7554/eLife.18648
Bersini, S., Schulte, R., Huang, L., Tsai, H. & Hetzer, M. W. Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome. Elife 9, e54383 (2020).
pubmed: 32896271
pmcid: 7478891
doi: 10.7554/eLife.54383
Wang, H., Yang, Y., Liu, J. & Qian, L. Direct cell reprogramming: approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol. 22, 410–424 (2021).
pubmed: 33619373
pmcid: 8161510
doi: 10.1038/s41580-021-00335-z
Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA 86, 5434–5438 (1989).
pubmed: 2748593
pmcid: 297637
doi: 10.1073/pnas.86.14.5434
Mertens, J., Marchetto, M. C., Bardy, C. & Gage, F. H. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat. Rev. Neurosci. 17, 424–437 (2016).
pubmed: 27194476
pmcid: 6276815
doi: 10.1038/nrn.2016.46
Kim, Y. et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 23, 2550–2558 (2018).
pubmed: 29847787
pmcid: 6478017
doi: 10.1016/j.celrep.2018.04.105
Quist, E. et al. Transcription factor-based direct conversion of human fibroblasts to functional astrocytes. Stem Cell Rep. 17, 1620–1635 (2022).
doi: 10.1016/j.stemcr.2022.05.015
Oh, Y. M. et al. Age-related Huntington’s disease progression modeled in directly reprogrammed patient-derived striatal neurons highlights impaired autophagy. Nat. Neurosci. 25, 1420–1433 (2022).
pubmed: 36303071
pmcid: 10162007
doi: 10.1038/s41593-022-01185-4
Victor, M. B. et al. Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat. Neurosci. 21, 341–352 (2018).
pubmed: 29403030
pmcid: 5857213
doi: 10.1038/s41593-018-0075-7
Lee, S. W. et al. Longitudinal modeling of human neuronal aging reveals the contribution of the RCAN1-TFEB pathway to Huntington’s disease neurodegeneration. Nat. Aging 4, 95–109 (2023).
Pircs, K. et al. Distinct subcellular autophagy impairments in induced neurons from patients with Huntington’s disease. Brain 145, 3035–3057 (2022).
pubmed: 34936701
doi: 10.1093/brain/awab473
Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).
pubmed: 27851729
pmcid: 5331785
doi: 10.1038/nature20565
Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. 42, 253–264 (2024).
Zhang, H., Xiong, Z. M. & Cao, K. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proc. Natl Acad. Sci. USA 111, E2261–E2270 (2014).
pubmed: 24843141
pmcid: 4050581
Pitrez, P. R. et al. Substrate topography modulates cell aging on a progeria cell model. ACS Biomater. Sci. Eng. 4, 1498–1504 (2018).
pubmed: 33445307
Lo, C. Y. et al. An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca(2)(+) rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria. PLoS ONE 9, e87273 (2014).
pubmed: 24475260
pmcid: 3903625
doi: 10.1371/journal.pone.0087273
Pasca, S. P. The rise of three-dimensional human brain cultures. Nature 553, 437–445 (2018).
pubmed: 29364288
doi: 10.1038/nature25032
Kraehenbuehl, T. P., Langer, R. & Ferreira, L. S. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat. Methods 8, 731–736 (2011).
pubmed: 21878920
doi: 10.1038/nmeth.1671
Fafian-Labora, J. A. & O’Loghlen, A. Classical and nonclassical intercellular communication in senescence and ageing. Trends Cell Biol. 30, 628–639 (2020).
pubmed: 32505550
doi: 10.1016/j.tcb.2020.05.003
Borghesan, M. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956–3971.e3956 (2019).
pubmed: 31242426
pmcid: 6613042
doi: 10.1016/j.celrep.2019.05.095
Atchison, L., Zhang, H., Cao, K. & Truskey, G. A. A tissue engineered blood vessel model of hutchinson-gilford progeria syndrome using human iPSC-derived smooth muscle cells. Sci. Rep. 7, 8168 (2017).
pubmed: 28811655
pmcid: 5557922
doi: 10.1038/s41598-017-08632-4
Sun, Z. et al. Endogenous recapitulation of Alzheimer’s disease neuropathology through human 3D direct neuronal reprogramming. bioRxiv https://doi.org/10.1101/2023.05.24.542155 (2023).
Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).
pubmed: 33623712
pmcid: 7893133
doi: 10.1038/s41578-021-00279-y
Hu, J. L., Todhunter, M. E., LaBarge, M. A. & Gartner, Z. J. Opportunities for organoids as new models of aging. J. Cell Biol. 217, 39–50 (2018).
pubmed: 29263081
pmcid: 5748992
doi: 10.1083/jcb.201709054
Chesnokova, V. et al. Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep. 37, 110068 (2021).
pubmed: 34910915
pmcid: 8716125
doi: 10.1016/j.celrep.2021.110068
Rai, M. et al. Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell Metab. 33, 1137–1154.e1139 (2021).
pubmed: 33773104
pmcid: 8172468
doi: 10.1016/j.cmet.2021.03.005
Shakhbazau, A., Danilkovich, N., Seviaryn, I., Ermilova, T. & Kosmacheva, S. Effects of minocycline and rapamycin in gamma-irradiated human embryonic stem cells-derived cerebral organoids. Mol. Biol. Rep. 46, 1343–1348 (2019).
pubmed: 30523518
doi: 10.1007/s11033-018-4552-6
Park, J. C. et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat. Commun. 12, 280 (2021).
pubmed: 33436582
pmcid: 7804132
doi: 10.1038/s41467-020-20440-5
Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).
pubmed: 31413369
pmcid: 7025879
doi: 10.1038/s41586-019-1484-9
Schuler, S. C. et al. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality. Cell Rep. 35, 109223 (2021).
pubmed: 34107247
doi: 10.1016/j.celrep.2021.109223
Mansour, A. A. et al. Erratum: an in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 772 (2018).
pubmed: 30080830
doi: 10.1038/nbt0818-772e
Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).
pubmed: 36224417
pmcid: 9556304
doi: 10.1038/s41586-022-05277-w
Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e2120 (2023).
pubmed: 37172564
doi: 10.1016/j.cell.2023.04.022
Murphy, S. V., De Coppi, P. & Atala, A. Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng. 4, 370–380 (2020).
pubmed: 31695178
doi: 10.1038/s41551-019-0471-7