Epigenome-wide association study identifies neonatal DNA methylation associated with two-year attention problems in children born very preterm.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
28 Feb 2024
28 Feb 2024
Historique:
received:
11
05
2023
accepted:
16
02
2024
revised:
07
02
2024
medline:
29
2
2024
pubmed:
29
2
2024
entrez:
28
2
2024
Statut:
epublish
Résumé
Prior research has identified epigenetic predictors of attention problems in school-aged children but has not yet investigated these in young children, or children at elevated risk of attention problems due to preterm birth. The current study evaluated epigenome-wide associations between neonatal DNA methylation and attention problems at age 2 years in children born very preterm. Participants included 441 children from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study, a multi-site study of infants born < 30 weeks gestational age. DNA methylation was measured from buccal swabs collected at NICU discharge using the Illumina MethylationEPIC Bead Array. Attention problems were assessed at 2 years of adjusted age using the attention problems subscale of the Child Behavior Checklist (CBCL). After adjustment for multiple testing, DNA methylation at 33 CpG sites was associated with child attention problems. Differentially methylated CpG sites were located in genes previously linked to physical and mental health, including several genes associated with ADHD in prior epigenome-wide and genome-wide association studies. Several CpG sites were located in genes previously linked to exposure to prenatal risk factors in the NOVI sample. Neonatal epigenetics measured at NICU discharge could be useful in identifying preterm children at risk for long-term attention problems and related psychiatric disorders, who could benefit from early prevention and intervention efforts.
Identifiants
pubmed: 38418845
doi: 10.1038/s41398-024-02841-y
pii: 10.1038/s41398-024-02841-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
126Subventions
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01HD072267
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : UH3OD023347
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01HD084515
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01HD072267
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : UH3OD023347
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01HD084515
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01HD072267
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : UH3OD023347
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01HD084515
Informations de copyright
© 2024. The Author(s).
Références
Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. AJP. 2007;164:942–8. https://doi.org/10.1176/ajp.2007.164.6.942
doi: 10.1176/ajp.2007.164.6.942
Barkley RA. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bull. 1997;121:65–94. https://doi.org/10.1037/0033-2909.121.1.65
doi: 10.1037/0033-2909.121.1.65
Leibson CL. Use and Costs of Medical Care for Children and Adolescents With and Without Attention-Deficit/Hyperactivity Disorder. JAMA. 2001;285:60. https://doi.org/10.1001/jama.285.1.60
doi: 10.1001/jama.285.1.60
pubmed: 11150110
Matza LS, Paramore C, Prasad M. A review of the economic burden of ADHD. Cost Eff Resour Alloc. 2005;3:5. https://doi.org/10.1186/1478-7547-3-5
doi: 10.1186/1478-7547-3-5
pubmed: 15946385
pmcid: 1180839
Anderson PJ, De Luca CR, Hutchinson E, Spencer-Smith MM, Roberts G, Doyle LW, et al. Attention Problems in a Representative Sample of Extremely Preterm/Extremely Low Birth Weight Children. Developmental Neuropsychol. 2011;36:57–73. https://doi.org/10.1080/87565641.2011.540538
doi: 10.1080/87565641.2011.540538
Franz AP, Bolat GU, Bolat H, Matijasevich A, Santos IS, Silveira RC, et al. Attention-Deficit/Hyperactivity Disorder and Very Preterm/Very Low Birth Weight: A Meta-analysis. Pediatrics. 2018;141:e20171645. https://doi.org/10.1542/peds.2017-1645
doi: 10.1542/peds.2017-1645
pubmed: 29255083
Sucksdorff M, Lehtonen L, Chudal R, Suominen A, Joelsson P, Gissler M, et al. Preterm Birth and Poor Fetal Growth as Risk Factors of Attention-Deficit/Hyperactivity Disorder. Pediatrics. 2015;136:e599–e608. https://doi.org/10.1542/peds.2015-1043
doi: 10.1542/peds.2015-1043
pubmed: 26304830
Thapar A, Cooper M, Eyre O, Langley K. Practitioner Review: What have we learnt about the causes of ADHD? J Child Psychol Psychiatry. 2013;54:3–16. https://doi.org/10.1111/j.1469-7610.2012.02611.x
doi: 10.1111/j.1469-7610.2012.02611.x
pubmed: 22963644
pmcid: 3572580
Cecil CAM, Nigg JT. Epigenetics and ADHD: Reflections on Current Knowledge, Research Priorities and Translational Potential. Mol Diagn Ther. 2022;26:581–606. https://doi.org/10.1007/s40291-022-00609-y
doi: 10.1007/s40291-022-00609-y
pubmed: 35933504
pmcid: 7613776
Dadds MR, Schollar-Root O, Lenroot R, Moul C, Hawes DJ. Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children. Eur Child Adolesc Psychiatry. 2016;25:1081–9. https://doi.org/10.1007/s00787-016-0828-3
doi: 10.1007/s00787-016-0828-3
pubmed: 26897359
van Mil NH, Steegers-Theunissen RPM, Bouwland-Both MI, Verbiest MMPJ, Rijlaarsdam J, Hofman A, et al. DNA methylation profiles at birth and child ADHD symptoms. J Psychiatr Res. 2014;49:51–9. https://doi.org/10.1016/j.jpsychires.2013.10.017
doi: 10.1016/j.jpsychires.2013.10.017
pubmed: 24290898
Xu Y, Chen XT, Luo M, Tang Y, Zhang G, Wu D, et al. Multiple epigenetic factors predict the attention deficit/hyperactivity disorder among the Chinese Han children. J Psychiatr Res. 2015;64:40–50. https://doi.org/10.1016/j.jpsychires.2015.03.006
doi: 10.1016/j.jpsychires.2015.03.006
pubmed: 25840828
Walton E, Pingault JB, Cecil CAM, Gaunt TR, Relton CL, Mill J, et al. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study. Mol Psychiatry. 2017;22:250–6. https://doi.org/10.1038/mp.2016.85
doi: 10.1038/mp.2016.85
pubmed: 27217153
Neumann A, Walton E, Alemany S, Cecil C, González JR, Jima DD, et al. Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis. Transl Psychiatry. 2020;10:398. https://doi.org/10.1038/s41398-020-01058-z
doi: 10.1038/s41398-020-01058-z
pubmed: 33184255
pmcid: 7665047
Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry. 2020;10:8 https://doi.org/10.1038/s41398-020-0710-4
doi: 10.1038/s41398-020-0710-4
pubmed: 32066674
pmcid: 7026179
Wilmot B, Fry R, Smeester L, Musser ED, Mill J, Nigg JT. Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J Child Psychol Psychiatr. 2016;57:152–60. https://doi.org/10.1111/jcpp.12457
doi: 10.1111/jcpp.12457
Chen YC, Sudre G, Sharp W, Donovan F, Chandrasekharappa SC, Hansen N, et al. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol Psychiatry. 2018;23:683–90. https://doi.org/10.1038/mp.2017.45
doi: 10.1038/mp.2017.45
pubmed: 28322272
Wang Y, Qian M, Tang D, Herbstman J, Perera F, Wang S A powerful and flexible weighted distance-based method incorporating interactions between DNA methylation and environmental factors on health outcomes. Hancock J, ed. Bioinformatics. 2020;36:653-9. https://doi.org/10.1093/bioinformatics/btz630
Goodman SJ, Burton CL, Butcher DT, Siu MT, Lemire M, Chater-Diehl E, et al. Obsessive-compulsive disorder and attention-deficit/hyperactivity disorder: distinct associations with DNA methylation and genetic variation. J Neurodev Disord. 2020;12:23 https://doi.org/10.1186/s11689-020-09324-3
doi: 10.1186/s11689-020-09324-3
pubmed: 32799817
pmcid: 7429807
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75. https://doi.org/10.1038/s41588-018-0269-7
doi: 10.1038/s41588-018-0269-7
pubmed: 30478444
Lasky-Su J, Neale BM, Franke B, Anney RJL, Zhou K, Maller JB, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1345–54. https://doi.org/10.1002/ajmg.b.30867
doi: 10.1002/ajmg.b.30867
pubmed: 18821565
Willcutt EG, Nigg JT, Pennington BF, Solanto MV, Rohde LA, Tannock R, et al. Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. J Abnorm Psychol. 2012;121:991–1010. https://doi.org/10.1037/a0027347
doi: 10.1037/a0027347
pubmed: 22612200
pmcid: 3622557
Nigg JT, Sibley MH, Thapar A, Karalunas SL. Development of ADHD: Etiology, Heterogeneity, and Early Life Course. Annu Rev Dev Psychol. 2020;2:559–83. https://doi.org/10.1146/annurev-devpsych-060320-93413
doi: 10.1146/annurev-devpsych-060320-93413
pubmed: 34368774
pmcid: 8336725
Finsaas MC, Bufferd SJ, Dougherty LR, Carlson GA, Klein DN. Preschool psychiatric disorders: homotypic and heterotypic continuity through middle childhood and early adolescence. Psychol Med. 2018;48:2159–68. https://doi.org/10.1017/S0033291717003646
doi: 10.1017/S0033291717003646
pubmed: 29335030
pmcid: 6047937
Vermont Oxford Network. Manual of Operations: Part 2. Data Definitions and Infant Data Forms. 2018; Vermont Oxford Network.
Everson TM, O’Shea TM, Burt A, Hermetz K, Carter BS, Helderman J, et al. Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. Clin Epigenet. 2020;12:151 https://doi.org/10.1186/s13148-020-00942-1
doi: 10.1186/s13148-020-00942-1
Liu J, Siegmund KD. An evaluation of processing methods for HumanMethylation450 BeadChip data. BMC Genomics. 2016;17:469 https://doi.org/10.1186/s12864-016-2819-7
doi: 10.1186/s12864-016-2819-7
pubmed: 27334613
pmcid: 4918139
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9. https://doi.org/10.1093/bioinformatics/btu049
doi: 10.1093/bioinformatics/btu049
pubmed: 24478339
pmcid: 4016708
Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208 https://doi.org/10.1186/s13059-016-1066-1
doi: 10.1186/s13059-016-1066-1
pubmed: 27717381
pmcid: 5055731
Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14:293 https://doi.org/10.1186/1471-2164-14-293
doi: 10.1186/1471-2164-14-293
pubmed: 23631413
pmcid: 3769145
Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–96. https://doi.org/10.1093/bioinformatics/bts680
doi: 10.1093/bioinformatics/bts680
pubmed: 23175756
Gatev E, Gladish N, Mostafavi S, Kobor MS. CoMeBack: DNA methylation array data analysis for co-methylated regions. Bioinformatics. 2020;36:2675–83. https://doi.org/10.1093/bioinformatics/btaa049
doi: 10.1093/bioinformatics/btaa049
pubmed: 31985744
Logue MW, Smith AK, Wolf EJ, Maniates H, Stone A, Schichman SA, et al. The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics. 2017;9:1363–71. https://doi.org/10.2217/epi-2017-0078
doi: 10.2217/epi-2017-0078
pubmed: 28809127
pmcid: 5967357
Zheng SC, Webster AP, Dong D, Feber A, Graham DG, Sullivan R, et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics. 2018;10:925–40. https://doi.org/10.2217/epi-2018-0037
doi: 10.2217/epi-2018-0037
pubmed: 29693419
Everson TM, Marsit CJ, Michael O’Shea T, Burt A, Hermetz K, Carter BS, et al. Epigenome-wide analysis identifies genes and pathways linked to neurobehavioral variation in preterm infants. Sci Rep. 2019;9:6322. https://doi.org/10.1038/s41598-019-42654-4
doi: 10.1038/s41598-019-42654-4
pubmed: 31004082
pmcid: 6474865
Camerota M, Graw S, Everson TM, McGowan EC, Hofheimer JA, O’Shea TM, et al. Prenatal risk factors and neonatal DNA methylation in very preterm infants. Clin Epigenet. 2021;13:171 https://doi.org/10.1186/s13148-021-01164-9
doi: 10.1186/s13148-021-01164-9
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
doi: 10.1111/j.2517-6161.1995.tb02031.x
Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9:47 https://doi.org/10.1038/s41398-019-0376-y
doi: 10.1038/s41398-019-0376-y
pubmed: 30705257
pmcid: 6355837
Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32:286–8. https://doi.org/10.1093/bioinformatics/btv560
doi: 10.1093/bioinformatics/btv560
pubmed: 26424855
MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic acids Res. 2017;45:D896–D901. https://doi.org/10.1093/nar/gkw1133
doi: 10.1093/nar/gkw1133
pubmed: 27899670
Battram T, Yousefi P, Crawford G, Prince C, Sheikhali Babaei M, Sharp G, et al. The EWAS Catalog: a database of epigenome-wide association studies. Wellcome Open Res. 2022;7:41 https://doi.org/10.12688/wellcomeopenres.17598.2
doi: 10.12688/wellcomeopenres.17598.2
pubmed: 35592546
pmcid: 9096146
Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021;53:1311–21. https://doi.org/10.1038/s41588-021-00923-x
doi: 10.1038/s41588-021-00923-x
pubmed: 34493871
pmcid: 7612069
Lv H, Zhang M, Shang Z, Li J, Zhang S, Lian D, et al. Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia. Oncotarget. 2017;8:7891–9. https://doi.org/10.18632/oncotarget.13631
doi: 10.18632/oncotarget.13631
pubmed: 27903959
Brandes N, Linial N, Linial M. Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Sci Rep. 2021;11:14901. https://doi.org/10.1038/s41598-021-94252-y
doi: 10.1038/s41598-021-94252-y
pubmed: 34290314
pmcid: 8295298
Rao S, Baranova A, Yao Y, Wang J, Zhang F. Genetic relationships between attention-deficit/hyperactivity disorder, autism spectrum disorder, and intelligence. Neuropsychobiology. 2022;81:484–96. https://doi.org/10.1159/000525411
doi: 10.1159/000525411
pubmed: 35764056
Karlsson Linnér R, Mallard TT, Barr PB, Sanchez-Roige S, Madole JW, Driver MN, et al. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat Neurosci. 2021;24:1367–76. https://doi.org/10.1038/s41593-021-00908-3
doi: 10.1038/s41593-021-00908-3
pubmed: 34446935
Aghagoli G, Sheinkopf SJ, Everson TM, Marsit CJ, Lee H, Burt AA, et al. Epigenome-wide analysis identifies genes and pathways linked to acoustic cry variation in preterm infants. Pediatr Res. 2021;89:1848–54. https://doi.org/10.1038/s41390-020-01172-0
doi: 10.1038/s41390-020-01172-0
pubmed: 32967004
Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96. https://doi.org/10.1016/j.ajhg.2016.02.019
doi: 10.1016/j.ajhg.2016.02.019
pubmed: 27040690
pmcid: 4833289
Kim JH, Kim JY, Lee J, Jeong GH, Lee E, Lee S, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. Lancet Psychiatry. 2020;7:955–70. https://doi.org/10.1016/S2215-0366(20)30312-6
doi: 10.1016/S2215-0366(20)30312-6
pubmed: 33069318
Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 2020;145:537–49. https://doi.org/10.1016/j.jaci.2019.09.035
doi: 10.1016/j.jaci.2019.09.035
pubmed: 31669095
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21. https://doi.org/10.1038/s41588-018-0147-3
doi: 10.1038/s41588-018-0147-3
pubmed: 30038396
pmcid: 6393768