Modular segmentation, spatial analysis and visualization of volume electron microscopy datasets.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
29 Feb 2024
Historique:
received: 07 03 2023
accepted: 24 11 2023
medline: 1 3 2024
pubmed: 1 3 2024
entrez: 29 2 2024
Statut: aheadofprint

Résumé

Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and spatial analysis is necessary. Here we describe a practical and annotation-efficient pipeline for organelle-specific segmentation, spatial analysis and visualization of large volume electron microscopy datasets using freely available, user-friendly software tools that can be run on a single standard workstation. The procedures are aimed at researchers in the life sciences with modest computational expertise, who use volume electron microscopy and need to generate three-dimensional (3D) segmentation labels for different types of cell organelles while minimizing manual annotation efforts, to analyze the spatial interactions between organelle instances and to visualize the 3D segmentation results. We provide detailed guidelines for choosing well-suited segmentation tools for specific cell organelles, and to bridge compatibility issues between freely available open-source tools, we distribute the critical steps as easily installable Album solutions for deep learning segmentation, spatial analysis and 3D rendering. Our detailed description can serve as a reference for similar projects requiring particular strategies for single- or multiple-organelle analysis, which can be achieved with computational resources commonly available to single-user setups.

Identifiants

pubmed: 38424188
doi: 10.1038/s41596-024-00957-5
pii: 10.1038/s41596-024-00957-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 16.0097-2

Informations de copyright

© 2024. Springer Nature Limited.

Références

Peddie, C. J. & Collinson, L. M. Exploring the third dimension: volume electron microscopy comes of age. Micron 61, 9–19 (2014).
pubmed: 24792442 doi: 10.1016/j.micron.2014.01.009
Peddie, C. J. et al. Volume electron microscopy. Nat. Rev. Methods Prim. 2, 51 (2022).
doi: 10.1038/s43586-022-00131-9
Hua, Y., Laserstein, P. & Helmstaedter, M. Large-volume en-bloc staining for electron microscopy-based connectomics. Nat. Commun. 6, 7923 (2015).
pubmed: 26235643 doi: 10.1038/ncomms8923
Kievits, A. J., Lane, R., Carroll, E. C. & Hoogenboom, J. P. How innovations in methodology offer new prospects for volume electron microscopy. J. Microsc. 287, 114–137 (2022).
pubmed: 35810393 pmcid: 9546337 doi: 10.1111/jmi.13134
Graham, B. J. et al. High-throughput transmission electron microscopy with automated serial sectioning. Preprint at bioRxiv https://doi.org/10.1101/657346 (2019).
Yin, W. et al. A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nat. Commun. 11, 4949 (2020).
pubmed: 33009388 pmcid: 7532165 doi: 10.1038/s41467-020-18659-3
Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774.e18 (2021).
pubmed: 33400916 pmcid: 8312698 doi: 10.1016/j.cell.2020.12.013
Xu, C. S. et al. Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6, e25916 (2017).
pubmed: 28500755 pmcid: 5476429 doi: 10.7554/eLife.25916
Motta, A. et al. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366, eaay3134 (2019).
pubmed: 31649140 doi: 10.1126/science.aay3134
Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).
pubmed: 32880371 pmcid: 7546738 doi: 10.7554/eLife.57443
Müller, A. et al. 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β. cells J. Cell Biol. 220, e202010039 (2021).
pubmed: 33326005 doi: 10.1083/jcb.202010039
Parlakgül, G. et al. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 603, 736–742 (2022).
pubmed: 35264794 pmcid: 9014868 doi: 10.1038/s41586-022-04488-5
Sheu, S.-H. et al. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell 185, 3390–3407.e18 (2022).
pubmed: 36055200 pmcid: 9789380 doi: 10.1016/j.cell.2022.07.026
Weigel, A. V. et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 184, 2412–2429.e16 (2021).
pubmed: 33852913 doi: 10.1016/j.cell.2021.03.035
Uwizeye, C. et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat. Commun. 12, 1049 (2021).
pubmed: 33594064 pmcid: 7886885 doi: 10.1038/s41467-021-21314-0
Musser, J. M. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 374, 717–723 (2021).
pubmed: 34735222 pmcid: 9233960 doi: 10.1126/science.abj2949
Bharathan, N. K. et al. Architecture and dynamics of a desmosome–endoplasmic reticulum complex. Nat. Cell Biol. 25, 823–835 (2023).
pubmed: 37291267 doi: 10.1038/s41556-023-01154-4
Malong, L. et al. Characterization of the structure and control of the blood-nerve barrier identifies avenues for therapeutic delivery. Dev. Cell 58, 174–191.e8 (2023).
pubmed: 36706755 doi: 10.1016/j.devcel.2023.01.002
Cortese, M. et al. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. Cell Host Microbe 28, 853–866.e5 (2020).
pubmed: 33245857 pmcid: 7670925 doi: 10.1016/j.chom.2020.11.003
Vergara, H. M. et al. Whole-body integration of gene expression and single-cell morphology. Cell 184, 4819–4837.e22 (2021).
pubmed: 34380046 pmcid: 8445025 doi: 10.1016/j.cell.2021.07.017
Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. & Patwardhan, A. EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13, 387–388 (2016).
pubmed: 27067018 doi: 10.1038/nmeth.3806
Conrad, R. & Narayan, K. CEM500K, a large-scale heterogeneous unlabeled cellular electron microscopy image dataset for deep learning. eLife 10, e65894 (2021).
pubmed: 33830015 pmcid: 8032397 doi: 10.7554/eLife.65894
Xu, C. S. et al. An open-access volume electron microscopy atlas of whole cells and tissues. Nature 599, 147–151 (2021).
pubmed: 34616045 pmcid: 9004664 doi: 10.1038/s41586-021-03992-4
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
pubmed: 8742726 doi: 10.1006/jsbi.1996.0013
Noske, A. B., Costin, A. J., Morgan, G. P. & Marsh, B. J. Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. J. Struct. Biol. 161, 298–313 (2008).
pubmed: 18069000 doi: 10.1016/j.jsb.2007.09.015
Wu, Y. et al. Contacts between the endoplasmic reticulum and other membranes in neurons. Proc. Natl Acad. Sci. USA 114, E4859–E4867 (2017).
pubmed: 28559323 pmcid: 5474793 doi: 10.1073/pnas.1701078114
Kaynig, V. et al. Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med. Image Anal. 22, 77–88 (2015).
pubmed: 25791436 pmcid: 4406409 doi: 10.1016/j.media.2015.02.001
Dorkenwald, S. et al. Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14, 435–442 (2017).
pubmed: 28250467 doi: 10.1038/nmeth.4206
Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771–774 (2021).
pubmed: 34168373 pmcid: 7611460 doi: 10.1038/s41592-021-01183-7
Heinrich, L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature 599, 141–146 (2021).
pubmed: 34616042 doi: 10.1038/s41586-021-03977-3
Spiers, H. et al. Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations. Traffic 22, 240–253 (2021).
pubmed: 33914396 doi: 10.1111/tra.12789
Gallusser, B. et al. Deep neural network automated segmentation of cellular structures in volume electron microscopy. J. Cell Biol. 222, e202208005 (2022).
pubmed: 36469001 pmcid: 9728137 doi: 10.1083/jcb.202208005
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
doi: 10.1023/A:1010933404324
Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).
pubmed: 30559429 doi: 10.1038/s41592-018-0261-2
Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol. 14, e1002340 (2016).
pubmed: 26727152 pmcid: 4699692 doi: 10.1371/journal.pbio.1002340
Tu, Z. & Bai, X. Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1744–1757 (2010).
pubmed: 20724753 doi: 10.1109/TPAMI.2009.186
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Kreshuk, A. & Zhang, C. in Computer Optimized Microscopy: Methods and Protocols (eds Rebollo, E. & Bosch, M.) 449–463 (Springer, 2019).
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).
pubmed: 30478326 doi: 10.1038/s41592-018-0216-7
Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) https://doi.org/10.1109/WACV45572.2020.9093435 (2020).
Helmstaedter, M., Briggman, K. L. & Denk, W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14, 1081–1088 (2011).
pubmed: 21743472 doi: 10.1038/nn.2868
Arzt, M. et al. LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. https://doi.org/10.3389/fcomp.2022.777728 (2022).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).
pubmed: 17210054 doi: 10.1111/j.1365-2818.2006.01706.x
Shrestha, N. et al. Integration of ER protein quality control mechanisms defines β-cell function and ER architecture. J. Clin. Invest. https://doi.org/10.1172/JCI163584 (2022).
Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278–280 (2019).
pubmed: 30886414 doi: 10.1038/s41592-019-0359-1
Albrecht, J. P., Schmidt, D. & Harrington, K. Album: a framework for scientific data processing with software solutions of heterogeneous tools. Preprint at https://doi.org/10.48550/arXiv.2110.00601 (2021).
Conrad, R. & Narayan, K. Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset. Cell Syst. 14, 58–71.e5 (2023).
pubmed: 36657391 pmcid: 9883049 doi: 10.1016/j.cels.2022.12.006
von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).
doi: 10.1038/s41467-021-22518-0
Ouyang, W. et al. BioImage Model Zoo: a community-driven resource for accessible deep learning in bioimage analysis. Preprint at bioRxiv https://doi.org/10.1101/2022.06.07.495102 (2022).
Weber, B. et al. Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos. J. Struct. Biol. 178, 129–138 (2012).
pubmed: 22182731 doi: 10.1016/j.jsb.2011.12.004
Eckstein, N., Buhmann, J., Cook, M. & Funke, J. Microtubule tracking in electron microscopy volumes. In Medical Image Computing and Computer Assisted Intervention (MICCAI) Part V 99–108 (Springer, 2020).
Kaltdorf, K. V. et al. Automated classification of synaptic vesicles in electron tomograms of C. elegans using machine learning. PLoS ONE 13, e0205348 (2018).
pubmed: 30296290 pmcid: 6175533 doi: 10.1371/journal.pone.0205348
Haberl, M. G. et al. CDeep3M—plug-and-play cloud-based deep learning for image segmentation. Nat. Methods 15, 677–680 (2018).
pubmed: 30171236 pmcid: 6548193 doi: 10.1038/s41592-018-0106-z
Koranne, S. in Handbook of Open Source Tools (ed. Koranne, S.) 191–200 (Springer, 2011).
Saalfeld, S. et al. saalfeldlab/n5: n5-2.5.1 https://doi.org/10.5281/zenodo.6578232 (2022).
Miles, A. et al. zarr-developers/zarr-python: v2.4.0 https://doi.org/10.5281/zenodo.3773450 (2020).
Luengo, I. et al. SuRVoS: super-region volume segmentation workbench. J. Struct. Biol. 198, 43–53 (2017).
pubmed: 28246039 pmcid: 5405849 doi: 10.1016/j.jsb.2017.02.007
Pennington, A. et al. SuRVoS 2: accelerating annotation and segmentation for large volumetric bioimage workflows across modalities and scales. Front. Cell Dev. Biol. 10, 842342 (2022).
pubmed: 35433703 pmcid: 9011330 doi: 10.3389/fcell.2022.842342
Belevich, I. & Jokitalo, E. DeepMIB: user-friendly and open-source software for training of deep learning network for biological image segmentation. PLoS Comput. Biol. 17, e1008374 (2021).
pubmed: 33651804 pmcid: 7954287 doi: 10.1371/journal.pcbi.1008374
Hennies, J. et al. CebraEM: a practical workflow to segment cellular organelles in volume SEM datasets using a transferable CNN-based membrane prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.04.06.535829 (2023).
Smith, P. et al. Online citizen science with the Zooniverse for analysis of biological volumetric data. Histochem. Cell Biol. https://doi.org/10.1007/s00418-023-02204-6 (2023).
Jorstad, A. et al. NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. Neuroinformatics 13, 83–92 (2015).
pubmed: 25240318 doi: 10.1007/s12021-014-9242-5
Jorstad, A., Blanc, J. & Knott, G. NeuroMorph: a software toolset for 3D analysis of neurite morphology and connectivity. Front. Neuroanat. 12, 59 (2018).
pubmed: 30083094 pmcid: 6064741 doi: 10.3389/fnana.2018.00059
Troidl, J. et al. Barrio: customizable spatial neighborhood analysis and comparison for nanoscale brain structures. Comput. Graph. Forum 41, 183–194 (2022).
doi: 10.1111/cgf.14532
Schroff, F., Criminisi, A. & Zisserman, A. in Procedings of the British Machine Vision Conference 2008 54.1–54.10 (British Machine Vision Association, 2008).
Arganda-Carreras, I. et al. Trainable weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).
pubmed: 28369169 doi: 10.1093/bioinformatics/btx180
Hallou, A., Yevick, H. G., Dumitrascu, B. & Uhlmann, V. Deep learning for bioimage analysis in developmental biology. Development 148, dev199616 (2021).
pubmed: 34490888 pmcid: 8451066 doi: 10.1242/dev.199616
Shaga Devan, K., Kestler, H. A., Read, C. & Walther, P. Weighted average ensemble-based semantic segmentation in biological electron microscopy images. Histochem. Cell Biol. 158, 447–462 (2022).
pubmed: 35988009 pmcid: 9630254 doi: 10.1007/s00418-022-02148-3
Mandal, S. & Uhlmann, V. Splinedist: automated cell segmentation with spline curves. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) https://doi.org/10.1109/ISBI48211.2021.9433928 (IEEE, 2021).
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
pubmed: 33318659 doi: 10.1038/s41592-020-01018-x
Sheridan, A. et al. Local shape descriptors for neuron segmentation. Nat. Methods 20, 295–303 (2023).
pubmed: 36585455 doi: 10.1038/s41592-022-01711-z
McDonald, K. L., O’Toole, E. T., Mastronarde, D. N. & McIntosh, J. R. Kinetochore microtubules in PTK cells. J. Cell Biol. 118, 369–383 (1992).
pubmed: 1629239 doi: 10.1083/jcb.118.2.369
Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98, 2399–2406 (2001).
pubmed: 11226251 pmcid: 30150 doi: 10.1073/pnas.051631998
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma. 18, 529 (2017).
doi: 10.1186/s12859-017-1934-z
Pietzsch, T., Preibisch, S., Tomančák, P. & Saalfeld, S. ImgLib2—generic image processing in Java. Bioinformatics 28, 3009–3011 (2012).
pubmed: 22962343 pmcid: 3496339 doi: 10.1093/bioinformatics/bts543
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
pubmed: 32939066 pmcid: 7759461 doi: 10.1038/s41586-020-2649-2
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543 pmcid: 7056644 doi: 10.1038/s41592-019-0686-2
McKinney, W. Data structures for statistical computing in Python. In Proc. of the 9th Python in Science Conference. https://doi.org/10.25080/Majora-92bf1922-00a (2010).
Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M. A high-level 3D visualization API for Java and ImageJ. BMC Bioinforma. 11, 274 (2010).
doi: 10.1186/1471-2105-11-274
Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012).
pubmed: 22723842 pmcid: 3378562 doi: 10.1371/journal.pone.0038011
Hennies, J. et al. AMST: alignment to median smoothed template for focused ion beam scanning electron microscopy image stacks. Sci. Rep. 10, 2004 (2020).
pubmed: 32029771 pmcid: 7004979 doi: 10.1038/s41598-020-58736-7
Hanslovsky, P., Bogovic, J. A. & Saalfeld, S. Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy. Bioinformatics 33, 1379–1386 (2017).
pubmed: 28453669 doi: 10.1093/bioinformatics/btw794
Roels, J. et al. An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat. Commun. 11, 771 (2020).
pubmed: 32034132 pmcid: 7005902 doi: 10.1038/s41467-020-14529-0
Krull, A., Buchholz, T.-O. & Jug, F. Noise2Void—learning denoising from single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2129–2137 (2019).
Perez, A. J. et al. A workflow for the automatic segmentation of organelles in electron microscopy image stacks. Front. Neuroanat. 8, 126 (2014).
pubmed: 25426032 pmcid: 4224098 doi: 10.3389/fnana.2014.00126
Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020).
pubmed: 31949053 pmcid: 7339343 doi: 10.1126/science.aaz5357
Müller, A. et al. Structure, interaction, and nervous connectivity of beta cell primary cilia. Preprint at bioRxriv https://doi.org/10.1101/2023.12.01.568979 (2024).
Park, G. et al. Amira annotation protocol. protocols.io https://www.protocols.io/view/amira-annotation-protocol-b834ryqw (2022).

Auteurs

Andreas Müller (A)

Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. andreas.mueller1@tu-dresden.de.
Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany. andreas.mueller1@tu-dresden.de.
German Center for Diabetes Research, Neuherberg, Germany. andreas.mueller1@tu-dresden.de.

Deborah Schmidt (D)

HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany. deborah.schmidt@mdc-berlin.de.

Jan Philipp Albrecht (JP)

HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
Humboldt-Universität zu Berlin, Faculty of Mathematics and Natural Sciences, Berlin, Germany.

Lucas Rieckert (L)

HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.

Maximilian Otto (M)

HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.

Leticia Elizabeth Galicia Garcia (LE)

Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany.
German Center for Diabetes Research, Neuherberg, Germany.
DFG Cluster of Excellence 'Physics of Life', TU Dresden, Dresden, Germany.

Gunar Fabig (G)

Experimental Center, Faculty of Medicine Carl Gustav Carus, Dresden, Dresden, Germany.

Michele Solimena (M)

Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany.
German Center for Diabetes Research, Neuherberg, Germany.
DFG Cluster of Excellence 'Physics of Life', TU Dresden, Dresden, Germany.

Martin Weigert (M)

Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. martin.weigert@epfl.ch.

Classifications MeSH