Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
01 Mar 2024
Historique:
received: 29 03 2021
accepted: 19 12 2023
medline: 2 3 2024
pubmed: 2 3 2024
entrez: 1 3 2024
Statut: aheadofprint

Résumé

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3

Identifiants

pubmed: 38429495
doi: 10.1038/s41588-023-01651-0
pii: 10.1038/s41588-023-01651-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 2012-305121

Informations de copyright

© 2024. The Author(s).

Références

Waldrop, M. A. et al. Diagnostic utility of whole exome sequencing in the neuromuscular clinic. Neuropediatrics 50, 96–102 (2019).
pubmed: 30665247 doi: 10.1055/s-0039-1677734
Deltas, C. Digenic inheritance and genetic modifiers. Clin. Genet. 93, 429–438 (2018).
pubmed: 28977688 doi: 10.1111/cge.13150
Van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H. & Fürst, D. O. A functional knock-out of titin results in defective myofibril assembly. J. Cell Sci. 113, 1405–1414 (2000).
pubmed: 10725223 doi: 10.1242/jcs.113.8.1405
Roberts, A. M. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7, 270ra6 (2015).
pubmed: 25589632 pmcid: 4560092 doi: 10.1126/scitranslmed.3010134
Savarese, M. et al. The complexity of titin splicing pattern in human adult skeletal muscles. Skelet. Muscle 8, 11 (2018).
pubmed: 29598826 pmcid: 5874998 doi: 10.1186/s13395-018-0156-z
Savarese, M. et al. Genotype-phenotype correlations in recessive titinopathies. Genet. Med. 22, 2029–2040 (2020).
pubmed: 32778822 doi: 10.1038/s41436-020-0914-2
Evilä, A. et al. Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy. Mol. Neurobiol. 54, 7212–7223 (2017).
pubmed: 27796757 doi: 10.1007/s12035-016-0242-3
Oates, E. C. et al. Congenital titinopathy: comprehensive characterization and pathogenic insights. Ann. Neurol. 83, 1105–1124 (2018).
pubmed: 29691892 pmcid: 6105519 doi: 10.1002/ana.25241
Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002).
pubmed: 12145747 pmcid: 379188 doi: 10.1086/342380
Pfeffer, G. et al. Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain 135, 1695–1713 (2012).
pubmed: 22577215 pmcid: 3359754 doi: 10.1093/brain/aws102
Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).
pubmed: 22335739 pmcid: 3660031 doi: 10.1056/NEJMoa1110186
Savarese, M. et al. Interpreting genetic variants in titin in patients with muscle disorders. JAMA Neurol. 75, 557–565 (2018).
pubmed: 29435569 pmcid: 5885217 doi: 10.1001/jamaneurol.2017.4899
Giannakouros, T., Nikolakaki, E., Mylonis, I. & Georgatsou, E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J. 278, 570–586 (2011).
pubmed: 21205200 doi: 10.1111/j.1742-4658.2010.07987.x
Gui, J. F., Lane, W. S. & Fu, X. D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).
pubmed: 8208298 doi: 10.1038/369678a0
Wang, H. Y. et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750 (1998).
pubmed: 9472028 pmcid: 2141757 doi: 10.1083/jcb.140.4.737
Nakagawa, O. et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 19, 2066–2077 (2005).
pubmed: 16140986 pmcid: 1199576 doi: 10.1101/gad.1338705
Fu, X. D. & Ares, M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).
pubmed: 25112293 pmcid: 4440546 doi: 10.1038/nrg3778
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533 pmcid: 5018207 doi: 10.1038/nature19057
Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 144–153 (2013).
pubmed: 23418287 doi: 10.1161/CIRCGENETICS.111.000062
Evilä, A. et al. Atypical phenotypes in titinopathies explained by second titin mutations. Ann. Neurol. 75, 230–240 (2014).
pubmed: 24395473 doi: 10.1002/ana.24102
Akinrinade, O., Koskenvuo, J. W. & Alastalo, T. P. Prevalence of titin truncating variants in general population. PLoS ONE 10, e0145284 (2015).
pubmed: 26701604 pmcid: 4689403 doi: 10.1371/journal.pone.0145284
Shih, Y. H. et al. Exon- and contraction-dependent functions of titin in sarcomere assembly. Development 143, 4713–4722 (2016).
pubmed: 27836965 pmcid: 5201027
Li, S., Guo, W., Dewey, C. N. & Greaser, M. L. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 41, 2659–2672 (2013).
pubmed: 23307558 pmcid: 3575840 doi: 10.1093/nar/gks1362
Murayama, R. et al. Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-binding motif protein 20 (RBM20) through nuclear localization. Sci. Rep. 8, 8970 (2018).
pubmed: 29895960 pmcid: 5997748 doi: 10.1038/s41598-018-26624-w
Sun, M. et al. SR protein kinases regulate the splicing of cardiomyopathy-relevant genes via phosphorylation of the RSRSP Stretch in RBM20. Genes (Basel) 13, 1526 (2022).
pubmed: 36140694 doi: 10.3390/genes13091526
Castiglione, A. & Moller, C. Usher syndrome. Audiol. Res. 12, 42–65 (2022).
pubmed: 35076463 pmcid: 8788290 doi: 10.3390/audiolres12010005
Liu, X. Z. et al. Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum. Genet. 125, 53–62 (2009).
pubmed: 19050930 doi: 10.1007/s00439-008-0602-9
Yang, Z. et al. Digenic heterozygous mutations of KCNH2 and SCN5A induced young and early-onset long QT syndrome and sinoatrial node dysfunction. Ann. Noninvasive Electrocardiol. 27, e12889 (2022).
pubmed: 34755423 doi: 10.1111/anec.12889
Chen, Q. et al. Digenic variants in the TTN and TRAPPC11 genes co-segregating with a limb-girdle muscular dystrophy in a han Chinese family. Front. Neurosci. 15, 601757 (2021).
pubmed: 33746696 pmcid: 7969792 doi: 10.3389/fnins.2021.601757
Peddareddygari, L. R., Oberoi, K. & Grewal, R. P. Limb girdle muscular dystrophy due to digenic inheritance of DES and CAPN3 mutations. Case Rep. Neurol. 10, 272–278 (2018).
pubmed: 30323756 pmcid: 6180278 doi: 10.1159/000492664
Lee, Y. et al. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J. Clin. Invest. 128, 1164–1177 (2018).
pubmed: 29457785 pmcid: 5824866 doi: 10.1172/JCI97103
Lemmers, R. J. et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 44, 1370–1374 (2012).
pubmed: 23143600 pmcid: 3671095 doi: 10.1038/ng.2454
Zhang, Y. et al. RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB J. 36, e22302 (2022).
pubmed: 35394688
Kim, C. H. et al. Eye movement defects in KO zebrafish reveals SRPK3 as a causative gene for an X-linked intellectual disability. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2683050/v1 (2023).
Rees, M. et al. Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol. 141, 431–453 (2021).
pubmed: 33449170 pmcid: 7882473 doi: 10.1007/s00401-020-02257-0
Dabby, R. et al. Adult onset limb-girdle muscular dystrophy—a recessive titinopathy masquerading as myositis. J. Neurol. Sci. 351, 120–123 (2015).
pubmed: 25772186 doi: 10.1016/j.jns.2015.03.001
Zheng, W. et al. Identification of a novel mutation in the titin gene in a Chinese family with limb-girdle muscular dystrophy 2J. Mol. Neurobiol. 53, 5097–5102 (2016).
pubmed: 26392295 doi: 10.1007/s12035-015-9439-0
Nallamilli, B. R. et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann. Clin. Transl. Neurol. 5, 1574–1587 (2018).
pubmed: 30564623 pmcid: 6292381 doi: 10.1002/acn3.649
Rich, K. A. et al. Novel heterozygous truncating titin variants affecting the A-band are associated with cardiomyopathy and myopathy/muscular dystrophy. Mol. Genet. Genom. Med. 8, e1460 (2020).
doi: 10.1002/mgg3.1460
Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).
pubmed: 22466703 pmcid: 3569865 doi: 10.1038/nm.2693
Koelemen, J., Gotthardt, M., Steinmetz, L. M. & Meder, B. RBM20-related cardiomyopathy: current understanding and future options. J. Clin. Med. 10, 4101 (2021).
pubmed: 34575212 pmcid: 8468976 doi: 10.3390/jcm10184101
Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).
pubmed: 19712804 pmcid: 2782634 doi: 10.1016/j.jacc.2009.05.038
Zhu, C., Yin, Z., Tan, B. & Guo, W. Insulin regulates titin pre-mRNA splicing through the PI3K-Akt-mTOR kinase axis in a RBM20-dependent manner. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2363–2371 (2017).
pubmed: 28676430 doi: 10.1016/j.bbadis.2017.06.023
Fenix, A. M. et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 6324 (2021).
pubmed: 34732726 pmcid: 8566601 doi: 10.1038/s41467-021-26623-y
Beqqali, A. et al. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism. Cardiovasc. Res. 112, 452–463 (2016).
pubmed: 27496873 doi: 10.1093/cvr/cvw192
Gaertner, A. et al. The combined human genotype of truncating TTN and RBM20 mutations is associated with severe and early onset of dilated cardiomyopathy. Genes (Basel) 12, 883 (2021).
pubmed: 34201072 doi: 10.3390/genes12060883
Van den Hoogenhof, M. M. G. et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138, 1330–1342 (2018).
pubmed: 29650543 doi: 10.1161/CIRCULATIONAHA.117.031947
Chen, Z. et al. Z-band and M-band titin splicing and regulation by RNA binding motif 20 in striated muscles. J. Cell. Biochem. 119, 9986–9996 (2018).
pubmed: 30133019 pmcid: 6218289 doi: 10.1002/jcb.27328
Maimaiti, R., Zhu, C., Zhang, Y., Ding, Q. & Guo, W. RBM20-mediated pre-mRNA splicing has muscle-specificity and differential hormonal responses between muscles and in muscle cell cultures. Int. J. Mol. Sci. 22, 2928 (2021).
pubmed: 33805770 pmcid: 7999644 doi: 10.3390/ijms22062928
Riley, L. A. et al. The skeletal muscle circadian clock regulates titin splicing through RBM20. eLife 11, e76478 (2022).
pubmed: 36047761 pmcid: 9473687 doi: 10.7554/eLife.76478
White, J. K. et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464 (2013).
pubmed: 23870131 pmcid: 3717207 doi: 10.1016/j.cell.2013.06.022
Brown, S. C., Fernandez-Fuente, M., Muntoni, F. & Vissing, J. Phenotypic spectrum of α-dystroglycanopathies associated with the c.919T>a variant in the FKRP gene in humans and mice. J. Neuropathol. Exp. Neurol. 79, 1257–1264 (2020).
pubmed: 33051673 doi: 10.1093/jnen/nlaa120
Zhou, Z. et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell 47, 422–433 (2012).
pubmed: 22727668 pmcid: 3418396 doi: 10.1016/j.molcel.2012.05.014
Wang, C. et al. SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Commun. Biol. 3, 268 (2020).
pubmed: 32461560 pmcid: 7253463 doi: 10.1038/s42003-020-0983-4
Nikolakaki, E., Sigala, I. & Giannakouros, T. Good cop, bad cop: the different roles of SRPKs. Front. Genet. 13, 902718 (2022).
pubmed: 35719374 pmcid: 9202992 doi: 10.3389/fgene.2022.902718
Bustos, F. et al. Functional diversification of SRSF protein kinase to control ubiquitin-dependent neurodevelopmental signaling. Dev. Cell 55, 629–647 (2020).
pubmed: 33080171 pmcid: 7725506 doi: 10.1016/j.devcel.2020.09.025
Navarro, C. L. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–2503 (2004).
pubmed: 15317753 doi: 10.1093/hmg/ddh265
Zhang, H. et al. ENAM mutations and digenic inheritance. Mol. Genet. Genomic Med. 7, e00928 (2019).
pubmed: 31478359 pmcid: 6785452 doi: 10.1002/mgg3.928
Barbier, M. et al. Intermediate repeat expansions of TBP and STUB1: genetic modifier or pure digenic inheritance in spinocerebellar ataxias? Genet. Med. 25, 100327 (2023).
pubmed: 36422518 doi: 10.1016/j.gim.2022.10.009
Thomas, M. G. et al. Whole exome sequencing identifies a new splicing factor gene causative of X-linked spinocerebellar ataxia. Invest. Ophthalmol. Vis. Sci. 56, 3994 (2015).
Niranjan, T. S. et al. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes. PLoS ONE 10, e0116454 (2015).
pubmed: 25679214 pmcid: 4332666 doi: 10.1371/journal.pone.0116454
Bogaert, E. et al. SRSF1 haploinsufficiency is responsible for a syndromic developmental disorder associated with intellectual disability. Am. J. Hum. Genet. 110, 790–808 (2023).
pubmed: 37071997 pmcid: 10183470 doi: 10.1016/j.ajhg.2023.03.016
Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).
pubmed: 2218183 doi: 10.1002/sim.4780090710
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
pubmed: 24487276 pmcid: 3992975 doi: 10.1038/ng.2892
Krieger, E. et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77, 114–122 (2009).
pubmed: 19768677 pmcid: 2922016 doi: 10.1002/prot.22570
Liao, Y., Smyth, G. K. & Shi, W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
pubmed: 23558742 pmcid: 3664803 doi: 10.1093/nar/gkt214
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Robinson, M. D. & Smyth, G. K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321–332 (2008).
pubmed: 17728317 doi: 10.1093/biostatistics/kxm030
Gadin, J. R., van’t Hooft, F. M., Eriksson, P. & Folkersen, L. AllelicImbalance: an R/bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing. BMC Bioinformatics 16, 194 (2015).
pubmed: 26066318 pmcid: 4465016 doi: 10.1186/s12859-015-0620-2
Töpf, A. et al. Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness. Genet. Med. 22, 1478–1488 (2020).
pubmed: 32528171 pmcid: 7462745 doi: 10.1038/s41436-020-0840-3
Agresti, A. & Coull, B. A. Order-restricted tests for stratified comparisons of binomial proportions. Biometrics 52, 1103–1111 (1996).
pubmed: 8805770 doi: 10.2307/2533072
Lathrop, G. M., Lalouel, J. M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. USA 81, 3443–3446 (1984).
pubmed: 6587361 pmcid: 345524 doi: 10.1073/pnas.81.11.3443
Gertz, E. M. et al. PSEUDOMARKER 2.0: efficient computation of likelihoods using NOMAD. BMC Bioinformatics 15, 47 (2014).
pubmed: 24533837 pmcid: 3932042 doi: 10.1186/1471-2105-15-47
Hiekkalinna, T. et al. PSEUDOMARKER: a powerful program for joint linkage and/or linkage disequilibrium analysis on mixtures of singletons and related individuals. Hum. Hered. 71, 256–266 (2011).
pubmed: 21811076 pmcid: 3190175 doi: 10.1159/000329467
Kettleborough, R. N. et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496, 494–497 (2013).
pubmed: 23594742 pmcid: 3743023 doi: 10.1038/nature11992
Dooley, C. M. et al. Multi-allelic phenotyping—a systematic approach for the simultaneous analysis of multiple induced mutations. Methods 62, 197–206 (2013).
pubmed: 23624102 pmcid: 3770900 doi: 10.1016/j.ymeth.2013.04.013
Wali, N., Merteroglu, M., White, R. J. & Busch-Nentwich, E. M. Total nucleic acid extraction from single zebrafish embryos for genotyping and RNA-seq. Bio Protoc. 12, e4284 (2022).
pubmed: 35118175 pmcid: 8769753 doi: 10.21769/BioProtoc.4284
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
pubmed: 16606683 doi: 10.1093/bioinformatics/btl140
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Whickham, H., Averick, M., Bryan, J. & Chang, W. Welcome to Tidyverse. J. Open Source Softw. 4, 1986 (2019).
Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).
pubmed: 25480548 pmcid: 4280593 doi: 10.1073/pnas.1419161111
Horstick, E. J., Gibbs, E. M., Li, X., Davidson, A. E. & Dowling, J. J. Analysis of embryonic and larval zebrafish skeletal myofibers from dissociated preparations. J. Vis. Exp. 13, e50259 (2013).

Auteurs

Ana Töpf (A)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. ana.topf@ncl.ac.uk.

Dan Cox (D)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Irina T Zaharieva (IT)

Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.

Valeria Di Leo (V)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
Department of Life Sciences, University of Trieste, Trieste, Italy.

Jaakko Sarparanta (J)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Per Harald Jonson (PH)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Ian M Sealy (IM)

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.

Andrei Smolnikov (A)

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.

Richard J White (RJ)

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.

Anna Vihola (A)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland.

Marco Savarese (M)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Munise Merteroglu (M)

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.

Neha Wali (N)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

Kristen M Laricchia (KM)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.

Cristina Venturini (C)

Division of Infection and Immunity, University College London, London, UK.

Bas Vroling (B)

Bio-Prodict, Nijmegen, The Netherlands.

Sarah L Stenton (SL)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Beryl B Cummings (BB)

Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.

Elizabeth Harris (E)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
Northern Genetics Service, Institute of Genetics Medicine, Newcastle upon Tyne, UK.

Chiara Marini-Bettolo (C)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Jordi Diaz-Manera (J)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Matt Henderson (M)

Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Rita Barresi (R)

IRCCS San Camillo Hospital, Venice, Italy.

Jennifer Duff (J)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Eleina M England (EM)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Jane Patrick (J)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

Sundos Al-Husayni (S)

The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Valerie Biancalana (V)

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France.

Alan H Beggs (AH)

The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Istvan Bodi (I)

Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK.

Shobhana Bommireddipalli (S)

Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia.

Carsten G Bönnemann (CG)

Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Anita Cairns (A)

Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia.

Mei-Ting Chiew (MT)

Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia.

Kristl G Claeys (KG)

Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium.

Sandra T Cooper (ST)

Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia.

Mark R Davis (MR)

Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia.

Sandra Donkervoort (S)

Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

Corrie E Erasmus (CE)

Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, The Netherlands.

Mahmoud R Fassad (MR)

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Casie A Genetti (CA)

The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Carla Grosmann (C)

Department of Neurology, Rady Children's Hospital University of California San Diego, San Diego, CA, USA.

Heinz Jungbluth (H)

Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.
Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK.

Erik-Jan Kamsteeg (EJ)

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Xavière Lornage (X)

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France.

Wolfgang N Löscher (WN)

Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.

Edoardo Malfatti (E)

APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Creteil, France.

Adnan Manzur (A)

Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.

Pilar Martí (P)

Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Neuromuscular Research Group, IIS La Fe, Valencia, Spain.

Tiziana E Mongini (TE)

Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy.

Nuria Muelas (N)

Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Neuromuscular Research Group, IIS La Fe, Valencia, Spain.
Department of Medicine, Universitat de Valencia, Valencia, Spain.
Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.

Atsuko Nishikawa (A)

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.

Anne O'Donnell-Luria (A)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Narumi Ogonuki (N)

RIKEN BioResource Research Center, Tsukuba, Japan.

Gina L O'Grady (GL)

Starship Children's Health, Auckland District Health Board, Auckland, New Zealand.

Emily O'Heir (E)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Stéphanie Paquay (S)

Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium.

Rahul Phadke (R)

Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.

Beth A Pletcher (BA)

Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA.

Norma B Romero (NB)

Neuromuscular Morphology Unit, Myology Institute, Sorbonne Université, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France (APHP), GH Pitié-Salpêtrière, Paris, France.

Meyke Schouten (M)

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Snehal Shah (S)

Department of Neurology, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Izelle Smuts (I)

Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Yves Sznajer (Y)

Center for Human Genetic, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium.

Giorgio Tasca (G)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Robert W Taylor (RW)

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Allysa Tuite (A)

Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA.

Peter Van den Bergh (P)

Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium.

Grace VanNoy (G)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Nicol C Voermans (NC)

Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.

Julia V Wanschitz (JV)

Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.

Elizabeth Wraige (E)

Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.

Kimihiko Yoshimura (K)

Department Neurology, Nankoku Hospital, Kochi, Japan.

Emily C Oates (EC)

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.

Osamu Nakagawa (O)

Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.

Ichizo Nishino (I)

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.

Jocelyn Laporte (J)

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France.

Juan J Vilchez (JJ)

Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
Neuromuscular Research Group, IIS La Fe, Valencia, Spain.

Daniel G MacArthur (DG)

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Centre for Population Genomics, Garvan Institute of Medical Research and UNSW, Sydney, New South Wales, Australia.
Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.

Anna Sarkozy (A)

Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.

Heather J Cordell (HJ)

Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Bjarne Udd (B)

Folkhälsan Research Center, Helsinki, Finland.
Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland.

Elisabeth M Busch-Nentwich (EM)

School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.

Francesco Muntoni (F)

Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.
NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL & Great Ormond Street Hospital Trust, London, UK.

Volker Straub (V)

John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. volker.straub@ncl.ac.uk.

Classifications MeSH