Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
01 Mar 2024
01 Mar 2024
Historique:
received:
29
03
2021
accepted:
19
12
2023
medline:
2
3
2024
pubmed:
2
3
2024
entrez:
1
3
2024
Statut:
aheadofprint
Résumé
In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3
Identifiants
pubmed: 38429495
doi: 10.1038/s41588-023-01651-0
pii: 10.1038/s41588-023-01651-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 2012-305121
Informations de copyright
© 2024. The Author(s).
Références
Waldrop, M. A. et al. Diagnostic utility of whole exome sequencing in the neuromuscular clinic. Neuropediatrics 50, 96–102 (2019).
pubmed: 30665247
doi: 10.1055/s-0039-1677734
Deltas, C. Digenic inheritance and genetic modifiers. Clin. Genet. 93, 429–438 (2018).
pubmed: 28977688
doi: 10.1111/cge.13150
Van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H. & Fürst, D. O. A functional knock-out of titin results in defective myofibril assembly. J. Cell Sci. 113, 1405–1414 (2000).
pubmed: 10725223
doi: 10.1242/jcs.113.8.1405
Roberts, A. M. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7, 270ra6 (2015).
pubmed: 25589632
pmcid: 4560092
doi: 10.1126/scitranslmed.3010134
Savarese, M. et al. The complexity of titin splicing pattern in human adult skeletal muscles. Skelet. Muscle 8, 11 (2018).
pubmed: 29598826
pmcid: 5874998
doi: 10.1186/s13395-018-0156-z
Savarese, M. et al. Genotype-phenotype correlations in recessive titinopathies. Genet. Med. 22, 2029–2040 (2020).
pubmed: 32778822
doi: 10.1038/s41436-020-0914-2
Evilä, A. et al. Targeted next-generation sequencing reveals novel TTN mutations causing recessive distal titinopathy. Mol. Neurobiol. 54, 7212–7223 (2017).
pubmed: 27796757
doi: 10.1007/s12035-016-0242-3
Oates, E. C. et al. Congenital titinopathy: comprehensive characterization and pathogenic insights. Ann. Neurol. 83, 1105–1124 (2018).
pubmed: 29691892
pmcid: 6105519
doi: 10.1002/ana.25241
Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002).
pubmed: 12145747
pmcid: 379188
doi: 10.1086/342380
Pfeffer, G. et al. Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain 135, 1695–1713 (2012).
pubmed: 22577215
pmcid: 3359754
doi: 10.1093/brain/aws102
Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).
pubmed: 22335739
pmcid: 3660031
doi: 10.1056/NEJMoa1110186
Savarese, M. et al. Interpreting genetic variants in titin in patients with muscle disorders. JAMA Neurol. 75, 557–565 (2018).
pubmed: 29435569
pmcid: 5885217
doi: 10.1001/jamaneurol.2017.4899
Giannakouros, T., Nikolakaki, E., Mylonis, I. & Georgatsou, E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J. 278, 570–586 (2011).
pubmed: 21205200
doi: 10.1111/j.1742-4658.2010.07987.x
Gui, J. F., Lane, W. S. & Fu, X. D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682 (1994).
pubmed: 8208298
doi: 10.1038/369678a0
Wang, H. Y. et al. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750 (1998).
pubmed: 9472028
pmcid: 2141757
doi: 10.1083/jcb.140.4.737
Nakagawa, O. et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 19, 2066–2077 (2005).
pubmed: 16140986
pmcid: 1199576
doi: 10.1101/gad.1338705
Fu, X. D. & Ares, M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).
pubmed: 25112293
pmcid: 4440546
doi: 10.1038/nrg3778
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 144–153 (2013).
pubmed: 23418287
doi: 10.1161/CIRCGENETICS.111.000062
Evilä, A. et al. Atypical phenotypes in titinopathies explained by second titin mutations. Ann. Neurol. 75, 230–240 (2014).
pubmed: 24395473
doi: 10.1002/ana.24102
Akinrinade, O., Koskenvuo, J. W. & Alastalo, T. P. Prevalence of titin truncating variants in general population. PLoS ONE 10, e0145284 (2015).
pubmed: 26701604
pmcid: 4689403
doi: 10.1371/journal.pone.0145284
Shih, Y. H. et al. Exon- and contraction-dependent functions of titin in sarcomere assembly. Development 143, 4713–4722 (2016).
pubmed: 27836965
pmcid: 5201027
Li, S., Guo, W., Dewey, C. N. & Greaser, M. L. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 41, 2659–2672 (2013).
pubmed: 23307558
pmcid: 3575840
doi: 10.1093/nar/gks1362
Murayama, R. et al. Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-binding motif protein 20 (RBM20) through nuclear localization. Sci. Rep. 8, 8970 (2018).
pubmed: 29895960
pmcid: 5997748
doi: 10.1038/s41598-018-26624-w
Sun, M. et al. SR protein kinases regulate the splicing of cardiomyopathy-relevant genes via phosphorylation of the RSRSP Stretch in RBM20. Genes (Basel) 13, 1526 (2022).
pubmed: 36140694
doi: 10.3390/genes13091526
Castiglione, A. & Moller, C. Usher syndrome. Audiol. Res. 12, 42–65 (2022).
pubmed: 35076463
pmcid: 8788290
doi: 10.3390/audiolres12010005
Liu, X. Z. et al. Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum. Genet. 125, 53–62 (2009).
pubmed: 19050930
doi: 10.1007/s00439-008-0602-9
Yang, Z. et al. Digenic heterozygous mutations of KCNH2 and SCN5A induced young and early-onset long QT syndrome and sinoatrial node dysfunction. Ann. Noninvasive Electrocardiol. 27, e12889 (2022).
pubmed: 34755423
doi: 10.1111/anec.12889
Chen, Q. et al. Digenic variants in the TTN and TRAPPC11 genes co-segregating with a limb-girdle muscular dystrophy in a han Chinese family. Front. Neurosci. 15, 601757 (2021).
pubmed: 33746696
pmcid: 7969792
doi: 10.3389/fnins.2021.601757
Peddareddygari, L. R., Oberoi, K. & Grewal, R. P. Limb girdle muscular dystrophy due to digenic inheritance of DES and CAPN3 mutations. Case Rep. Neurol. 10, 272–278 (2018).
pubmed: 30323756
pmcid: 6180278
doi: 10.1159/000492664
Lee, Y. et al. TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J. Clin. Invest. 128, 1164–1177 (2018).
pubmed: 29457785
pmcid: 5824866
doi: 10.1172/JCI97103
Lemmers, R. J. et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 44, 1370–1374 (2012).
pubmed: 23143600
pmcid: 3671095
doi: 10.1038/ng.2454
Zhang, Y. et al. RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB J. 36, e22302 (2022).
pubmed: 35394688
Kim, C. H. et al. Eye movement defects in KO zebrafish reveals SRPK3 as a causative gene for an X-linked intellectual disability. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2683050/v1 (2023).
Rees, M. et al. Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol. 141, 431–453 (2021).
pubmed: 33449170
pmcid: 7882473
doi: 10.1007/s00401-020-02257-0
Dabby, R. et al. Adult onset limb-girdle muscular dystrophy—a recessive titinopathy masquerading as myositis. J. Neurol. Sci. 351, 120–123 (2015).
pubmed: 25772186
doi: 10.1016/j.jns.2015.03.001
Zheng, W. et al. Identification of a novel mutation in the titin gene in a Chinese family with limb-girdle muscular dystrophy 2J. Mol. Neurobiol. 53, 5097–5102 (2016).
pubmed: 26392295
doi: 10.1007/s12035-015-9439-0
Nallamilli, B. R. et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann. Clin. Transl. Neurol. 5, 1574–1587 (2018).
pubmed: 30564623
pmcid: 6292381
doi: 10.1002/acn3.649
Rich, K. A. et al. Novel heterozygous truncating titin variants affecting the A-band are associated with cardiomyopathy and myopathy/muscular dystrophy. Mol. Genet. Genom. Med. 8, e1460 (2020).
doi: 10.1002/mgg3.1460
Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).
pubmed: 22466703
pmcid: 3569865
doi: 10.1038/nm.2693
Koelemen, J., Gotthardt, M., Steinmetz, L. M. & Meder, B. RBM20-related cardiomyopathy: current understanding and future options. J. Clin. Med. 10, 4101 (2021).
pubmed: 34575212
pmcid: 8468976
doi: 10.3390/jcm10184101
Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).
pubmed: 19712804
pmcid: 2782634
doi: 10.1016/j.jacc.2009.05.038
Zhu, C., Yin, Z., Tan, B. & Guo, W. Insulin regulates titin pre-mRNA splicing through the PI3K-Akt-mTOR kinase axis in a RBM20-dependent manner. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2363–2371 (2017).
pubmed: 28676430
doi: 10.1016/j.bbadis.2017.06.023
Fenix, A. M. et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 6324 (2021).
pubmed: 34732726
pmcid: 8566601
doi: 10.1038/s41467-021-26623-y
Beqqali, A. et al. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism. Cardiovasc. Res. 112, 452–463 (2016).
pubmed: 27496873
doi: 10.1093/cvr/cvw192
Gaertner, A. et al. The combined human genotype of truncating TTN and RBM20 mutations is associated with severe and early onset of dilated cardiomyopathy. Genes (Basel) 12, 883 (2021).
pubmed: 34201072
doi: 10.3390/genes12060883
Van den Hoogenhof, M. M. G. et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138, 1330–1342 (2018).
pubmed: 29650543
doi: 10.1161/CIRCULATIONAHA.117.031947
Chen, Z. et al. Z-band and M-band titin splicing and regulation by RNA binding motif 20 in striated muscles. J. Cell. Biochem. 119, 9986–9996 (2018).
pubmed: 30133019
pmcid: 6218289
doi: 10.1002/jcb.27328
Maimaiti, R., Zhu, C., Zhang, Y., Ding, Q. & Guo, W. RBM20-mediated pre-mRNA splicing has muscle-specificity and differential hormonal responses between muscles and in muscle cell cultures. Int. J. Mol. Sci. 22, 2928 (2021).
pubmed: 33805770
pmcid: 7999644
doi: 10.3390/ijms22062928
Riley, L. A. et al. The skeletal muscle circadian clock regulates titin splicing through RBM20. eLife 11, e76478 (2022).
pubmed: 36047761
pmcid: 9473687
doi: 10.7554/eLife.76478
White, J. K. et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464 (2013).
pubmed: 23870131
pmcid: 3717207
doi: 10.1016/j.cell.2013.06.022
Brown, S. C., Fernandez-Fuente, M., Muntoni, F. & Vissing, J. Phenotypic spectrum of α-dystroglycanopathies associated with the c.919T>a variant in the FKRP gene in humans and mice. J. Neuropathol. Exp. Neurol. 79, 1257–1264 (2020).
pubmed: 33051673
doi: 10.1093/jnen/nlaa120
Zhou, Z. et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell 47, 422–433 (2012).
pubmed: 22727668
pmcid: 3418396
doi: 10.1016/j.molcel.2012.05.014
Wang, C. et al. SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Commun. Biol. 3, 268 (2020).
pubmed: 32461560
pmcid: 7253463
doi: 10.1038/s42003-020-0983-4
Nikolakaki, E., Sigala, I. & Giannakouros, T. Good cop, bad cop: the different roles of SRPKs. Front. Genet. 13, 902718 (2022).
pubmed: 35719374
pmcid: 9202992
doi: 10.3389/fgene.2022.902718
Bustos, F. et al. Functional diversification of SRSF protein kinase to control ubiquitin-dependent neurodevelopmental signaling. Dev. Cell 55, 629–647 (2020).
pubmed: 33080171
pmcid: 7725506
doi: 10.1016/j.devcel.2020.09.025
Navarro, C. L. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–2503 (2004).
pubmed: 15317753
doi: 10.1093/hmg/ddh265
Zhang, H. et al. ENAM mutations and digenic inheritance. Mol. Genet. Genomic Med. 7, e00928 (2019).
pubmed: 31478359
pmcid: 6785452
doi: 10.1002/mgg3.928
Barbier, M. et al. Intermediate repeat expansions of TBP and STUB1: genetic modifier or pure digenic inheritance in spinocerebellar ataxias? Genet. Med. 25, 100327 (2023).
pubmed: 36422518
doi: 10.1016/j.gim.2022.10.009
Thomas, M. G. et al. Whole exome sequencing identifies a new splicing factor gene causative of X-linked spinocerebellar ataxia. Invest. Ophthalmol. Vis. Sci. 56, 3994 (2015).
Niranjan, T. S. et al. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes. PLoS ONE 10, e0116454 (2015).
pubmed: 25679214
pmcid: 4332666
doi: 10.1371/journal.pone.0116454
Bogaert, E. et al. SRSF1 haploinsufficiency is responsible for a syndromic developmental disorder associated with intellectual disability. Am. J. Hum. Genet. 110, 790–808 (2023).
pubmed: 37071997
pmcid: 10183470
doi: 10.1016/j.ajhg.2023.03.016
Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).
pubmed: 2218183
doi: 10.1002/sim.4780090710
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
pubmed: 24487276
pmcid: 3992975
doi: 10.1038/ng.2892
Krieger, E. et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77, 114–122 (2009).
pubmed: 19768677
pmcid: 2922016
doi: 10.1002/prot.22570
Liao, Y., Smyth, G. K. & Shi, W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
pubmed: 23558742
pmcid: 3664803
doi: 10.1093/nar/gkt214
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Robinson, M. D. & Smyth, G. K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321–332 (2008).
pubmed: 17728317
doi: 10.1093/biostatistics/kxm030
Gadin, J. R., van’t Hooft, F. M., Eriksson, P. & Folkersen, L. AllelicImbalance: an R/bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing. BMC Bioinformatics 16, 194 (2015).
pubmed: 26066318
pmcid: 4465016
doi: 10.1186/s12859-015-0620-2
Töpf, A. et al. Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness. Genet. Med. 22, 1478–1488 (2020).
pubmed: 32528171
pmcid: 7462745
doi: 10.1038/s41436-020-0840-3
Agresti, A. & Coull, B. A. Order-restricted tests for stratified comparisons of binomial proportions. Biometrics 52, 1103–1111 (1996).
pubmed: 8805770
doi: 10.2307/2533072
Lathrop, G. M., Lalouel, J. M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. USA 81, 3443–3446 (1984).
pubmed: 6587361
pmcid: 345524
doi: 10.1073/pnas.81.11.3443
Gertz, E. M. et al. PSEUDOMARKER 2.0: efficient computation of likelihoods using NOMAD. BMC Bioinformatics 15, 47 (2014).
pubmed: 24533837
pmcid: 3932042
doi: 10.1186/1471-2105-15-47
Hiekkalinna, T. et al. PSEUDOMARKER: a powerful program for joint linkage and/or linkage disequilibrium analysis on mixtures of singletons and related individuals. Hum. Hered. 71, 256–266 (2011).
pubmed: 21811076
pmcid: 3190175
doi: 10.1159/000329467
Kettleborough, R. N. et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496, 494–497 (2013).
pubmed: 23594742
pmcid: 3743023
doi: 10.1038/nature11992
Dooley, C. M. et al. Multi-allelic phenotyping—a systematic approach for the simultaneous analysis of multiple induced mutations. Methods 62, 197–206 (2013).
pubmed: 23624102
pmcid: 3770900
doi: 10.1016/j.ymeth.2013.04.013
Wali, N., Merteroglu, M., White, R. J. & Busch-Nentwich, E. M. Total nucleic acid extraction from single zebrafish embryos for genotyping and RNA-seq. Bio Protoc. 12, e4284 (2022).
pubmed: 35118175
pmcid: 8769753
doi: 10.21769/BioProtoc.4284
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
pubmed: 16606683
doi: 10.1093/bioinformatics/btl140
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Whickham, H., Averick, M., Bryan, J. & Chang, W. Welcome to Tidyverse. J. Open Source Softw. 4, 1986 (2019).
Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).
pubmed: 25480548
pmcid: 4280593
doi: 10.1073/pnas.1419161111
Horstick, E. J., Gibbs, E. M., Li, X., Davidson, A. E. & Dowling, J. J. Analysis of embryonic and larval zebrafish skeletal myofibers from dissociated preparations. J. Vis. Exp. 13, e50259 (2013).