The neuroanatomy of visual extinction following right hemisphere brain damage: Insights from multivariate and Bayesian lesion analyses in acute stroke.

VLSM intraparietal sulcus selective attention support vector regression temporo-parietal junction visual extinction

Journal

Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065

Informations de publication

Date de publication:
Mar 2024
Historique:
revised: 08 01 2024
received: 14 07 2023
accepted: 06 02 2024
medline: 4 3 2024
pubmed: 4 3 2024
entrez: 4 3 2024
Statut: ppublish

Résumé

Multi-target attention, that is, the ability to attend and respond to multiple visual targets presented simultaneously on the horizontal meridian across both visual fields, is essential for everyday real-world behaviour. Given the close link between the neuropsychological deficit of extinction and attentional limits in healthy subjects, investigating the anatomy that underlies extinction is uniquely capable of providing important insights concerning the anatomy critical for normal multi-target attention. Previous studies into the brain areas critical for multi-target attention and its failure in extinction patients have, however, produced heterogeneous results. In the current study, we used multivariate and Bayesian lesion analysis approaches to investigate the anatomical substrate of visual extinction in a large sample of 108 acute right hemisphere stroke patients. The use of acute stroke patient data and multivariate/Bayesian lesion analysis approaches allowed us to address limitations associated with previous studies and so obtain a more complete picture of the functional network associated with visual extinction. Our results demonstrate that the right temporo-parietal junction (TPJ) is critically associated with visual extinction. The Bayesian lesion analysis additionally implicated the right intraparietal sulcus (IPS), in line with the results of studies in neurologically healthy participants that highlighted the IPS as the area critical for multi-target attention. Our findings resolve the seemingly conflicting previous findings, and emphasise the urgent need for further research to clarify the precise cognitive role of the right TPJ in multi-target attention and its failure in extinction patients.

Identifiants

pubmed: 38433712
doi: 10.1002/hbm.26639
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e26639

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : HA5839/4-1
Organisme : Deutsche Forschungsgemeinschaft
ID : KA 1258/23-1
Organisme : Fonds National de la Recherche Luxembourg
ID : FNR/11601161

Informations de copyright

© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Références

Agosta, S., Magnago, D., Tyler, S., Grossman, E., Galante, E., Ferraro, F., Mazzini, N., Miceli, G., & Battelli, L. (2017). The pivotal role of the right parietal lobe in temporal attention. Journal of Cognitive Neuroscience, 29(5), 805-815. https://doi.org/10.1162/jocn_a_01086
Anticevic, A., Repovs, G., Shulman, G. L., & Barch, D. M. (2010). When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage, 49(3), 2638-2648. https://doi.org/10.1016/j.neuroimage.2009.11.008
Battelli, L., Alvarez, G. A., Carlson, T., & Pascual-Leone, A. (2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 21(10), 1946-1955. https://doi.org/10.1162/jocn.2008.21149
Battelli, L., Pascual-Leone, A., & Cavanagh, P. (2007). The ‘when’ pathway of the right parietal lobe. Trends in Cognitive Sciences, 11(5), 204-210. https://doi.org/10.1016/j.tics.2007.03.001
Baylis, G., Simon, S. L., Baylis, L. L., & Rorden, C. (2002). Visual extinction with double simultaneous stimulation: What is simultaneous? Neuropsychologia, 40(7), 1027-1034.
Becker, E., & Karnath, H.-O. (2007). Incidence of visual extinction after left versus right hemisphere stroke. Stroke, 38, 3172-3174. https://doi.org/10.1161/STROKEAHA.107.489096
Beume, L.-A., Kaller, C. P., Hoeren, M., Klöppel, S., Kuemmerer, S., Glauche, V., Köstering, L., Mader, I., Rijntjes, M., Weiller, C., & Umarova, R. (2015). Processing of bilateral versus unilateral conditions: Evidence for the functional contribution of the ventral attention network. Cortex, 66, 91-102. https://doi.org/10.1016/j.cortex.2015.02.018
Beume, L.-A., Rijntjes, M., Dressing, A., Kaller, C. P., Hieber, M., Martin, M., Kirsch, S., Kümmerer, D., Urbach, H., Umarova, R. M., & Weiller, C. (2020). Dissociation of visual extinction and neglect in the left hemisphere. Cortex, 129, 211-222. https://doi.org/10.1016/j.cortex.2020.04.010
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523-547. https://doi.org/10.1037/0033-295X.97.4.523
Bundesen, C. (1998). Visual selective attention: Outlines of a choice model, a race model and a computational theory. Visual Cognition, 5(1/2), 287-309.
Caplan, L. R., Gorelick, P. B., & Hier, D. B. (1986). Race, sex and occlusive cerebrovascular disease: A review. Stroke, 17(4), 648-655. https://doi.org/10.1161/01.STR.17.4.648
Caviness, V. S., Makris, N., Montinaro, E., Sahin, N. T., Bates, J. F., Schwamm, L., Caplan, D., & Kennedy, D. N. (2002). Anatomy of stroke, part I: An MRI-based topographic and volumetric system of analysis. Stroke, 33(11), 2549-2556.
Cazzoli, D., Müri, R. M., Hess, C. W., & Nyffeler, T. (2009). Horizontal and vertical dimensions of visual extinction: A theta burst stimulation study. Neuroscience, 164(4), 1609-1614. https://doi.org/10.1016/j.neuroscience.2009.09.044
Chechlacz, M., Rotshtein, P., & Humpreys, G. W. (2014). Neuronal substrates of Corsi Block span: Lesion symptom mapping analyses in relation to attentional competition and spatial bias. Neuropsychologia, 64, 240-251. https://doi.org/10.1016/j.neuropsychologia.2014.09.038
Chechlacz, M., Rotshtein, P., Hansen, P. C., Deb, S., Riddoch, M. J., & Humphreys, G. W. (2013). The central role of the temporo-parietal junction and the superior longitudinal fasciculus in supporting multi-item competition: Evidence from lesion-symptom mapping of extinction. Cortex, 49(2), 487-506. https://doi.org/10.1016/j.cortex.2011.11.008
Chechlacz, M., Terry, A., Demeyere, N., Douis, H., Bickerton, W.-L., Rotshtein, P., & Humphreys, G. W. (2013). Common and distinct neural mechanisms of visual and tactile extinction: A large scale VBM study in sub-acute stroke. NeuroImage: Clinical, 2, 291-302. https://doi.org/10.1016/j.nicl.2013.01.013
Çiçek, M., Gitelman, D., Hurley, R. S., Nobre, A., & Mesulam, M. (2007). Anatomical physiology of spatial extinction. Cerebral Cortex, 17(12), 2892-2898. https://doi.org/10.1093/cercor/bhm014
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215.
Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. WOS:000293772100023.
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306-324.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87-114.
Davis, B., Christie, J., & Rorden, C. (2009). Temporal order judgments activate temporal parietal junction. Journal of Neuroscience, 29(10), 3182-3188. https://doi.org/10.1523/JNEUROSCI.5793-08.2009
de Haan, B., & Karnath, H.-O. (2018). A hitchhiker's guide to lesion-behaviour mapping. Neuropsychologia, 115, 5-16. https://doi.org/10.1016/j.neuropsychologia.2017.10.021
de Haan, B., Bither, M., Brauer, A., & Karnath, H.-O. (2015). Neural correlates of spatial attention and target detection in a multi-target environment. Cerebral Cortex, 25(8), 2321-2331. https://doi.org/10.1093/cercor/bhu046
de Haan, B., Karnath, H.-O., & Driver, J. (2012). Mechanisms and anatomy of unilateral extinction after brain injury. Neuropsychologia, 50(6), 1045-1053. https://doi.org/10.1016/j.neuropsychologia.2012.02.015
DeMarco, A. T., & Turkeltaub, P. E. (2018). A multivariate lesion symptom mapping toolbox and examination of lesion-volume biases and correction methods in lesion-symptom mapping. Human Brain Mapping, 39(11), 4169-4182. https://doi.org/10.1002/hbm.24289
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205
Driver, J., Mattingley, J. B., Rorden, C., & Davis, G. (1997). Extinction as a paradigm measure of attentional bias and restricted capacity following brain injury. In P. Thier & H.-O. Karnath (Eds.), Parietal lobe contributions to orientation in 3D space (pp. 401-429). Springer-Verlag.
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1996). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155-161.
Dugué, L., Merriam, E. P., Heeger, D. J., & Carrasco, M. (2018). Specific visual subregions of TPJ mediate reorienting of spatial attention. Cerebral Cortex, 28(7), 2375-2390. https://doi.org/10.1093/cercor/bhx140
Duncan, J. (1998). Converging levels of analysis in the cognitive neuroscience of visual attention. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353(1373), 1307-1317. https://doi.org/10.1098/rstb.1998.0285
Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Chavda, S., & Shibuya, H. (1999). Systematic analysis of deficits in visual attention. Journal of Experimental Psychology-General, 128(4), 450-478. https://doi.org/10.1037/0096-3445.128.4.450
Duncan, J., Humphreys, G., & Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7(2), 255-261. https://doi.org/10.1016/S0959-4388(97)80014-1
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325-1335. https://doi.org/10.1016/j.neuroimage.2004.12.034
Emrich, S. M., Burianova, H., & Ferber, S. (2011). Transient perceptual neglect: Visual working memory load affects conscious object processing. Journal of Cognitive Neuroscience, 23(10), 2968-2982. https://doi.org/10.1162/jocn_a_00028
Feeney, D. M., & Baron, J. C. (1986). Diaschisis. Stroke, 17(5), 817-830.
Gauthier, L., Dehaut, F., & Joanette, Y. (1989). The bells test: A quantitative and qualitative test for visual neglect. International Journal of Clinical Neuropsychology, 11(2), 49-54.
Geng, J. J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: Contextual updating? Neuroscience & Biobehavioral Reviews, 37(10), 2608-2620. https://doi.org/10.1016/j.neubiorev.2013.08.010
Geng, J. J., Eger, E., Ruff, C. C., Kristjansson, A., Rotshtein, P., & Driver, J. (2006). On-line attentional selection from competing stimuli in opposite visual fields: Effects on human visual cortex and control processes. Journal of Neurophysiology, 96(5), 2601-2612. https://doi.org/10.1152/jn.01245.2005
Gillebert, C. R., Dyrholm, M., Vangkilde, S., Kyllingsbaek, S., Peeters, R., & Vandenberghe, R. (2012). Attentional priorities and access to short-term memory: Parietal interactions. NeuroImage, 62(3), 1551-1562.
Habekost, T., & Rostrup, E. (2006). Persisting asymmetries of vision after right side lesions. Neuropsychologia, 44(6), 876-895. https://doi.org/10.1016/j.neuropsychologia.2005.09.002
Hanayik, T., Yourganov, G., Newman-Norlund, R., Gibson, M., & Rorden, C. (2019). Visual simultaneity judgments activate a bilateral frontoparietal timing system. Journal of Cognitive Neuroscience, 31(3), 431-441. https://doi.org/10.1162/jocn_a_01357
He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905-918.
Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33(9), 1219-1240. https://doi.org/10.1016/0042-6989(93)90210-n
Hilgetag, C. C., Théoret, H., & Pascual-Leone, A. (2001). Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Nature Neuroscience, 4(9), 953-957. https://doi.org/10.1038/nn0901-953
Hillis, A. E., Chang, S., Heidler-Gary, J., Newhart, M., Kleinman, J. T., Davis, C., Barker, P. B., Aldrich, E., & Ken, L. (2006). Neural correlates of modality-specific spatial extinction. Journal of Cognitive Neuroscience, 18(11), 1889-1898.
Hung, J., Driver, J., & Walsh, V. (2005). Visual selection and posterior parietal cortex: Effects of repetitive transcranial magnetic stimulation on partial report analyzed by Bundesen's theory of visual attention. Journal of Neuroscience, 25(42), 9602-9612. https://doi.org/10.1523/JNEUROSCI.0879-05.2005
Husain, M., & Rorden, C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nature Reviews Neuroscience, 4(1), 26-36. https://doi.org/10.1038/nrn1005
Karnath, H.-O., & Rennig, J. (2016). Investigating structure and function in the healthy human brain: Validity of acute versus chronic lesion-symptom mapping. Brain Structure and Function, 222, 2059-2070. https://doi.org/10.1007/s00429-016-1325-7
Karnath, H.-O., & Rorden, C. (2012). The anatomy of spatial neglect. Neuropsychologia, 50(6), 1010-1017.
Karnath, H.-O., Himmelbach, M., & Kuker, W. (2003). The cortical substrate of visual extinction. Neuroreport, 14(3), 437-442.
Karnath, H.-O., Sperber, C., & Rorden, C. (2018). Mapping human brain lesions and their functional consequences. NeuroImage, 165, 180-189. https://doi.org/10.1016/j.neuroimage.2017.10.028
Koch, G., Oliveri, M., Torriero, S., & Caltagirone, C. (2005). Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex. Experimental Brain Research, 160(4), 510-516.
Mah, Y.-H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. Brain, 137(9), 2522-2531. https://doi.org/10.1093/brain/awu164
Mattingley, J. B. (2002). Spatial extinction and its relation to mechanisms of normal attention. In H.-O. Karnath, A. D. Milner, & G. Vallar (Eds.), The cognitive and neural bases of spatial neglect (pp. 289-309). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198508335.001.0001
Meister, I. G., Wienemann, M., Buelte, D., Grunewald, C., Sparing, R., Dambeck, N., & Boroojerdi, B. (2006). Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction. Neuroscience, 142, 119-123. https://doi.org/10.1016/j.neuroscience.2006.06.023
Mitchell, D. J., & Cusack, R. (2008). Flexible, capacity-limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks. Cerebral Cortex, 18(8), 1788-1798. https://doi.org/10.1093/cercor/bhm205
Oppenheim, H. (1885). Über eine durch eine klinisch bisher nicht verwerthete Untersuchungsmethode ermittelte Form der Sensibilitätsstörung bei einseitigen Erkrankungen des Grosshirns. Neurologisches Centralblatt, 4, 529-532.
Pascual-Leone, A., Gomez-Tortosa, E., Grafman, J., Alway, D., Nichelli, P., & Hallett, M. (1994). Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe. Neurology, 44(3), 494-498. https://doi.org/10.1212/WNL.44.3_Part_1.494
Peers, P. V., Ludwig, C. J. H., Rorden, C., Cusack, R., Bonfiglioli, C., Bundesen, C., Driver, J., Antoun, N., & Duncan, J. (2005). Attentional functions of parietal and frontal cortex. Cerebral Cortex, 15(10), 1469-1484. https://doi.org/10.1093/cercor/bhi029
Phan, T. G., Donnan, G. A., Wright, P. M., & Reutens, D. C. (2005). A digital map of middle cerebral artery infarcts associated with middle cerebral artery trunk and branch occlusion. Stroke, 36(5), 986-991.
Praß, M., & de Haan, B. (2019). Multi-target attention and visual short-term memory capacity are closely linked in the intraparietal sulcus. Human Brain Mapping, 40(12), 3589-3605. https://doi.org/10.1002/hbm.24618
Pustina, D., Avants, B., Faseyitan, O. K., Medaglia, J. D., & Coslett, H. B. (2018). Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations. Neuropsychologia, 115, 154-166. https://doi.org/10.1016/j.neuropsychologia.2017.08.027
Rasmussen, P. M., Hansen, L. K., Madsen, K. H., Churchill, N. W., & Strother, S. C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 45(6), 2085-2100. https://doi.org/10.1016/j.patcog.2011.09.011
Rorden, C., & Karnath, H.-O. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews Neuroscience, 5(1471), 813-819. https://doi.org/10.1038/nrn1521
Rorden, C., & Karnath, H.-O. (2010). A simple measure of neglect severity. Neuropsychologia, 48(9), 2758-2763.
Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., & Karnath, H.-O. (2012). Age-specific CT and MRI templates for spatial normalization. NeuroImage, 61(4), 957-965. https://doi.org/10.1016/j.neuroimage.2012.03.020
Rorden, C., Fridriksson, J., & Karnath, H.-O. (2009). An evaluation of traditional and novel tools for lesion behavior mapping. NeuroImage, 44(4), 1355-1362. https://doi.org/10.1016/j.neuroimage.2008.09.031
Rorden, C., Mattingley, J. B., Karnath, H.-O., & Driver, J. (1997). Visual extinction and prior entry: Impaired perception of temporal order with intact motion perception after unilateral parietal damage. Neuropsychologia, 35(4), 421-433.
Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., Poldrack, R. A., Bilder, R. M., & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064-1080.
Shulman, G. L., Astafiev, S. V., McAvoy, M. P., Davossa, G., & Corbetta, M. (2007). Right TPJ deactivation during visual search: Functional significance and support for a filter hypothesis. Cerebral Cortex, 17(11), 2625-2633.
Sperber, C., & Karnath, H. O. (2022). Statistical considerations in voxel-based lesion-behavior mapping. In D. Pustina & D. Mirman (Eds.), Lesion-to-symptom mapping (pp. 119-133). Springer. https://doi.org/10.1007/978-1-0716-2225-4_6
Sperber, C., & Karnath, H.-O. (2016). Topography of acute stroke in a sample of 439 right brain damaged patients. NeuroImage: Clinical, 10, 124-128. https://doi.org/10.1016/j.nicl.2015.11.012
Sperber, C., Gallucci, L., Smaczny, S., & Umarova, R. (2023). Bayesian lesion-deficit inference with Bayes factor mapping: Key advantages, limitations, and a toolbox. NeuroImage, 271, 120008. https://doi.org/10.1016/j.neuroimage.2023.120008
Sperber, C., Nolingberg, C., & Karnath, H.-O. (2020). Post-stroke cognitive deficits rarely come alone: Handling co-morbidity in lesion-behaviour mapping. Human Brain Mapping, 41(6), 1387-1399. https://doi.org/10.1002/hbm.24885
Sperber, C., Wiesen, D., & Karnath, H.-O. (2019). An empirical evaluation of multivariate lesion behaviour mapping using support vector regression. Human Brain Mapping, 40(5), 1381-1390. https://doi.org/10.1002/hbm.24476
Sperber, C., Wiesen, D., Goldenberg, G., & Karnath, H.-O. (2019). A network underlying human higher-order motor control: Insights from machine learning-based lesion-behaviour mapping in apraxia of pantomime. Cortex, 121, 308-321. https://doi.org/10.1016/j.cortex.2019.08.023
Stelmach, L. B., & Herdman, C. M. (1991). Directed attention and perception of temporal-order. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 539-550.
Stoeckel, M. C., Wittsack, H. J., Meisel, S., & Steiz, R. J. (2007). Pattern of cortex and white matter involvement in severe middle cerebral artery ischemia. Journal of Neuroimaging, 17(2), 131-140.
Ticini, L. F., de Haan, B., Klose, U., Nagele, T., & Karnath, H.-O. (2010). The role of temporo-parietal cortex in subcortical visual extinction. Journal of Cognitive Neuroscience, 22, 2141-2150. https://doi.org/10.1162/jocn.2009.21315
Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751-754. https://doi.org/10.1038/nature02466
Todd, J. J., Fougnie, D., & Marois, R. (2005). Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychological Science, 16(12), 965-972. https://doi.org/10.1111/j.1467-9280.2005.01645.x
Umarova, R. M., Saur, D., Kaller, C. P., Vry, M. S., Glauche, V., Mader, I., Hennig, J., & Weiller, C. (2011). Acute visual neglect and extinction: Distinct functional state of the visuospatial attention system. Brain, 134, 3310-3325.
Vossel, S., Eschenbeck, P., Weiss, P. H., Weidner, R., Saliger, J., Karbe, H., & Fink, G. R. (2011). Visual extinction in relation to visuospatial neglect after right-hemispheric stroke: Quantitative assessment and statistical lesion-symptom mapping. Journal of Neurology, Neurosurgery, and Psychiatry, 82(8), 862-868. https://doi.org/10.1136/jnnp.2010.224261
Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76. https://doi.org/10.3758/s13423-017-1323-7
Walsh, V., & Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37(2), 125-135.
Weintraub, S., & Mesulam, M. M. (1985). Mental state assessment of young and elderly adults in behavioral neurology. In M. M. Mesulam (Ed.), Principles of behavioral neurology (pp. 71-123). Davis Company.
Wiesen, D., Sperber, C., Yourganov, G., Rorden, C., & Karnath, H.-O. (2019). Using machine learning-based lesion behavior mapping to identify anatomical networks of cognitive dysfunction: Spatial neglect and attention. NeuroImage, 201, 116000. https://doi.org/10.1016/j.neuroimage.2019.07.013
Zhang, Y., Kimberg, D. Y., Coslett, H. B., Schwartz, M. F., & Wang, Z. (2014). Multivariate lesion-symptom mapping using support vector regression. Human Brain Mapping, 35(12), 5861-5876. https://doi.org/10.1002/hbm.22590
Zhang, Y., Zhang, J., Oishi, K., Faria, A. V., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G. B., Evans, A., Toga, A. W., Woods, R., Mazziotta, J. C., Miller, M. I., van Zijl, P. C. M., & Mori, S. (2010). Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage, 52(4), 1289-1301. https://doi.org/10.1016/j.neuroimage.2010.05.049

Auteurs

Christoph Sperber (C)

Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland.

Daniel Wiesen (D)

Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Hans-Otto Karnath (HO)

Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Department of Psychology, University of South Carolina, Columbia, South Carolina, USA.

Bianca de Haan (B)

Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.

Classifications MeSH