Clostridium perfringens-induced massive hemolysis treatment with blood purification to target toxins: a case report.
Clostridium perfringens
Blood purification techniques
CRRT
Massive intravascular hemolysis
Septic shock
Journal
CEN case reports
ISSN: 2192-4449
Titre abrégé: CEN Case Rep
Pays: Japan
ID NLM: 101636244
Informations de publication
Date de publication:
04 Mar 2024
04 Mar 2024
Historique:
received:
22
10
2023
accepted:
07
02
2024
medline:
4
3
2024
pubmed:
4
3
2024
entrez:
4
3
2024
Statut:
aheadofprint
Résumé
Clostridium perfringens can rarely cause severe systemic infections, usually from an abdominal source, associated with massive hemolysis, which is usually fatal. Hemolytic anemia and acute renal injury resulting from toxin action are critical for the development of multiple organ dysfunction syndrome (MODs), making this condition a real emergency, requiring multispecialty skills and aggressive multimodal therapies. We herein describe a case of septic shock from acute cholecystitis with massive hemolysis caused by C. perfringens in a 55 year-old man that was successfully treated with early blood purification and continuous renal replacement therapy (CRRT) along with antibiotic therapy and surgery. The effect of the enormous amount of toxins produced by Clostridium which elicit a strong cytokine response and the damage caused by the hemolysis products are the main pathogenetic mechanisms of this rare but lethal clinical entity. The main goal of treatment is to remove toxins from plasma, block toxin action, and further production by achieving bacterial killing with antimicrobial agents and controlling the infectious focus, remove waste products and prevent or limit multiorgan damage. Blood purification techniques play an important role due to a strong pathophysiological rationale, as they can remove toxins and cytokines as well as cell-free products from plasma and also replace renal function. Although this condition is rare and robust data are lacking, blood purification techniques for C. perfringens-induced massive hemolysis are promising and should be further explored.
Identifiants
pubmed: 38436873
doi: 10.1007/s13730-024-00857-3
pii: 10.1007/s13730-024-00857-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Japanese Society of Nephrology.
Références
Simon TG, Bradley J, Jones A, et al. Massive intravascular hemolysis from Clostridium perfringens septicemia: a review. J Intensive Care Med. 2014;29:327–33.
doi: 10.1177/0885066613498043
pubmed: 24019300
Suzaki A, Hayakawa S. Clinical and microbiological features of fulminant haemolysis caused by Clostridium perfringens bacteraemia: unknown pathogenesis. Microorganisms. 2023;11(4):824.
doi: 10.3390/microorganisms11040824
pubmed: 37110247
pmcid: 10143116
McArthur HL, Dalal BI, Kollmannsberger C. Intravascular hemolysis as a complication of Clostridium perfringens sepsis. J Clin Oncol. 2006;24(15):2387–8.
doi: 10.1200/JCO.2005.03.4009
pubmed: 16710038
Navarro MA, McClane BA, Uzal FA. Mechanisms of action and cell death associated with Clostridium perfringens toxins. Toxins (Basel). 2018;10(5):212.
doi: 10.3390/toxins10050212
pubmed: 29786671
Suzaki A, Ohtani K, Komine-Aizawa S, Matsumoto A, Kamiya S, Hayakawa S. Pathogenic characterization of Clostridium perfringens strains isolated from patients with massive intravascular hemolysis. Front Microbiol. 2021;12: 713509.
doi: 10.3389/fmicb.2021.713509
pubmed: 34385995
pmcid: 8353389
Verherstraeten S, Goossens E, Valgaeren B, Pardon B, et al. Perfringolysin O: the underrated Clostridium perfringens toxin? Toxins (Basel). 2015;7(5):1702–21.
doi: 10.3390/toxins7051702
pubmed: 26008232
Titball RW, Naylor CE, Basak AK. The Clostridium perfringens alpha-toxin. Anaerobe. 1999;5(2):51–64.
doi: 10.1006/anae.1999.0191
pubmed: 16887662
Minneci PC, Deans KJ, Zhi H, Yuen PS, et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005;115(12):3409–17.
doi: 10.1172/JCI25040
pubmed: 16294219
pmcid: 1283939
Dvanajscak Z, Walker PD, Cossey LN, Messias NC, et al. Hemolysis-associated hemoglobin cast nephropathy results from a range of clinicopathologic disorders. Kidney Int. 2019;96(6):1400–7.
doi: 10.1016/j.kint.2019.08.026
pubmed: 31668630
Smit B, van der Helm MW, Bosma M, Hudig F, Russcher H. Massive hemolysis due to Clostridium perfringens: a laboratory’s perspective. Clin Chem Lab Med. 2020;58(11):e295–7.
doi: 10.1515/cclm-2020-0676
pubmed: 32609643
Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293(13):1653–62.
doi: 10.1001/jama.293.13.1653
pubmed: 15811985
Cobo F, Pérez-Carrasco V, Martín-Hita L, García-Salcedo JA, Navarro-Marí JM. Comparative evaluation of MALDI-TOF MS and 16S rRNA gene sequencing for the identification of clinically relevant anaerobic bacteria. Crit Eval Discrepant Result Anaerob. 2023;14(82): 102754.
Mitchell SL, Simner PJ. Next-generation sequencing in clinical microbiology: are we there yet? Clin Lab Med. 2019;39(3):405–18.
doi: 10.1016/j.cll.2019.05.003
pubmed: 31383265
Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7(1):141.
doi: 10.1038/s41426-018-0144-8
pubmed: 30082713
pmcid: 6079034
Pence MA. Antimicrobial resistance in clinically important anaerobes. Clin Microbio Newsl. 2019;41(1):1–7.
doi: 10.1016/j.clinmicnews.2018.12.003
Stevens DL, Maier KA, Mitten JE. Effect of antibiotics on toxin production and viability of Clostridium perfringens. Antimicrob Agent Chemother. 1987;31(2):213–8.
doi: 10.1128/AAC.31.2.213
Brook I. Treatment of anaerobic infection. Expert Rev Anti Infect Ther. 2007;5(6):991–1006.
doi: 10.1586/14787210.5.6.991
pubmed: 18039083
De Rosa S, Marengo M, Fiorentino M, Fanelli V, Brienza N, Fiaccadori E, Grasselli G, Morabito S, Pota V, Romagnoli S, Valente F, Cantaluppi V. SIAARTI-SIN joint commission Extracorporeal blood purification therapies for sepsis-associated acute kidney injury in critically ill patients: expert opinion from the SIAARTI-SIN joint commission. J Nephrol. 2023. https://doi.org/10.1007/s40620-023-01637-5 .
doi: 10.1007/s40620-023-01637-5
pubmed: 37843731
pmcid: 10543830
Evans L, Rhodes A, Alhazzani W, Antonelli M, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensiv Care Med. 2021;47(11):1181–247.
doi: 10.1007/s00134-021-06506-y
Broman ME, Hansson F, Vincent JL, Bodelsson M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: a randomized crossover double-blind study. PLoS ONE. 2019;14(8): e0220444.
doi: 10.1371/journal.pone.0220444
pubmed: 31369593
pmcid: 6675097
Cucchiari D, Reverter E, Blasco M, Molina-Andujar A, et al. High cut-off membrane for in-vivo dialysis of free plasma hemoglobin in a patient with massive hemolysis. BMC Nephrol. 2018;19:250.
doi: 10.1186/s12882-018-1051-x
pubmed: 30286730
pmcid: 6172805