NDUFS4 regulates cristae remodeling in diabetic kidney disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 Mar 2024
Historique:
received: 19 06 2023
accepted: 22 02 2024
medline: 6 3 2024
pubmed: 5 3 2024
entrez: 4 3 2024
Statut: epublish

Résumé

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.

Identifiants

pubmed: 38438382
doi: 10.1038/s41467-024-46366-w
pii: 10.1038/s41467-024-46366-w
pmc: PMC10912198
doi:

Substances chimiques

Ndufs4 protein, mouse 0
Electron Transport Complex I EC 7.1.1.2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1965

Subventions

Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK078900
Pays : United States
Organisme : NHLBI NIH HHS
ID : K01 HL143111
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM072804
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK091310
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA125123
Pays : United States
Organisme : NIH HHS
ID : S10 OD012304
Pays : United States

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2024. The Author(s).

Références

Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–S127 (2022).
doi: 10.1016/j.kint.2022.06.008
Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).
doi: 10.1056/NEJMoa1515920 pubmed: 27299675
Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).
doi: 10.1056/NEJMoa2108269 pubmed: 34215025
Mohandes, S. et al. Molecular pathways that drive diabetic kidney disease. J. Clin. Invest. 133, e165654 (2023).
doi: 10.1172/JCI165654 pubmed: 36787250 pmcid: 9927939
Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629–646 (2017).
doi: 10.1038/nrneph.2017.107 pubmed: 28804120 pmcid: 5965678
Xie, Y. et al. Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney Int. 102, 293–306 (2022).
doi: 10.1016/j.kint.2022.02.038 pubmed: 35469894 pmcid: 9329239
Yoshioka, K. et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. 101, 510–526 (2022).
doi: 10.1016/j.kint.2021.10.039 pubmed: 34856312
Ayanga, B. A. et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2733–2747 (2016).
doi: 10.1681/ASN.2015101096 pubmed: 26825530 pmcid: 5004662
Forbes, J. M. & Thorburn, D. R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 14, 291–312 (2018).
doi: 10.1038/nrneph.2018.9 pubmed: 29456246
Mise, K., Galvan, D. L. & Danesh, F. R. Shaping Up Mitochondria in Diabetic Nephropathy. Kidney360 1, 982–992 (2020).
doi: 10.34067/KID.0002352020 pubmed: 34189465 pmcid: 8238457
Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell. Biol. 21, 204–224 (2020).
doi: 10.1038/s41580-020-0210-7 pubmed: 32071438
Bennett, C. F., Latorre-Muro, P. & Puigserver, P. Mechanisms of mitochondrial respiratory adaptation. Nat. Rev. Mol. Cell Biol. 23, 817–835 (2022).
doi: 10.1038/s41580-022-00506-6 pubmed: 35804199 pmcid: 9926497
Wang, W. et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 15, 186–200 (2012).
doi: 10.1016/j.cmet.2012.01.009 pubmed: 22326220 pmcid: 3278719
Galvan, D. L. et al. Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807–2823 (2019).
doi: 10.1172/JCI127277 pubmed: 31063459 pmcid: 6597204
Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).
doi: 10.1038/nature17184 pubmed: 26982719 pmcid: 4909121
Tang, C. et al. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 17, 299–318 (2021).
doi: 10.1038/s41581-020-00369-0 pubmed: 33235391
Nishikawa, T., Edelstein, D. & Brownlee, M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int. Suppl. 77, S26–S30 (2000).
doi: 10.1046/j.1523-1755.2000.07705.x pubmed: 10997687
Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).
doi: 10.1038/35008121 pubmed: 10783895
Vercellino, I. & Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 23, 141–161 (2022).
doi: 10.1038/s41580-021-00415-0 pubmed: 34621061
Vinothkumar, K. R., Zhu, J. & Hirst, J. Architecture of mammalian respiratory complex I. Nature 515, 80–84 (2014).
doi: 10.1038/nature13686 pubmed: 25209663 pmcid: 4224586
Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).
doi: 10.1038/nature19095 pubmed: 27509854 pmcid: 5027920
Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I(1)III(2)IV(1). Cell 167, 1598–1609 e1510 (2016).
doi: 10.1016/j.cell.2016.11.012 pubmed: 27912063
Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).
doi: 10.1126/science.1230381 pubmed: 23812712
Calvo, E. et al. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q(pool). Sci. Adv. 6, eaba7509 (2020).
doi: 10.1126/sciadv.aba7509 pubmed: 32637615 pmcid: 7314541
DiMauro, S. & Schon, E. A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348, 2656–2668 (2003).
doi: 10.1056/NEJMra022567 pubmed: 12826641
Berthiaume, J. M., Kurdys, J. G., Muntean, D. M. & Rosca, M. G. Mitochondrial NAD(+)/NADH redox state and diabetic cardiomyopathy. Antioxid. Redox Signal. 30, 375–398 (2019).
doi: 10.1089/ars.2017.7415 pubmed: 29073779
Antoun, G. et al. Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals. Diabetologia 58, 2861–2866 (2015).
doi: 10.1007/s00125-015-3772-8 pubmed: 26404066
van de Wal, M. A. E. et al. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain 145, 45–63 (2022).
doi: 10.1093/brain/awab426 pubmed: 34849584
Forbes, J. M. et al. Deficiency in mitochondrial complex I activity due to Ndufs6 gene trap insertion induces renal disease. Antioxid. Redox Signal. 19, 331–343 (2013).
doi: 10.1089/ars.2012.4719 pubmed: 23320803
Cleveland, K. H. & Schnellmann, R. G. Pharmacological targeting of mitochondria in diabetic kidney disease. Pharmacol. Rev. 75, 250–262 (2023).
doi: 10.1124/pharmrev.122.000560 pubmed: 36781216
Tervaert, T. W. et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556–563 (2010).
doi: 10.1681/ASN.2010010010 pubmed: 20167701
Kruse, S. E. et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 7, 312–320 (2008).
doi: 10.1016/j.cmet.2008.02.004 pubmed: 18396137 pmcid: 2593686
Waypa, G. B. et al. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res. 106, 526–535 (2010).
doi: 10.1161/CIRCRESAHA.109.206334 pubmed: 20019331
Galvan, D. L. et al. Real-time in vivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen species in diabetic nephropathy. Kidney Int. 92, 1282–1287 (2017).
doi: 10.1016/j.kint.2017.05.015 pubmed: 28754553 pmcid: 5656393
Cogliati, S., Enriquez, J. A. & Scorrano, L. Mitochondrial cristae: Where beauty meets functionality. Trends. Biochem. Sci. 41, 261–273 (2016).
doi: 10.1016/j.tibs.2016.01.001 pubmed: 26857402
Merkwirth, C. et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 22, 476–488 (2008).
doi: 10.1101/gad.460708 pubmed: 18281461 pmcid: 2238669
Desmurs, M. et al. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol. Cell. Biol. 35, 1139–1156 (2015).
doi: 10.1128/MCB.01047-14 pubmed: 25605331 pmcid: 4355537
Arguello, T. et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 37, 110139 (2021).
doi: 10.1016/j.celrep.2021.110139 pubmed: 34936866 pmcid: 8785211
Jha, P., Wang, X. & Auwerx, J. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr. Protoc. Mouse Biol. 6, 1–14 (2016).
doi: 10.1002/9780470942390.mo150182 pubmed: 26928661 pmcid: 4823378
Schägger, H. et al. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J. Biol. Chem. 279, 36349–36353 (2004).
doi: 10.1074/jbc.M404033200 pubmed: 15208329
Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).
doi: 10.1016/j.cell.2013.08.032 pubmed: 24055366 pmcid: 3790458
Leighton, R. E., Alperstein, A. M. & Frontiera, R. R. Label-free super-resolution imaging techniques. Annu. Rev. Anal. Chem. 15, 37–55 (2022).
doi: 10.1146/annurev-anchem-061020-014723
Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
doi: 10.1002/pro.3235 pubmed: 28710774
Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).
doi: 10.1038/nprot.2016.169 pubmed: 28079879 pmcid: 5540229
Mitsopoulos, P. et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell. Biol. 35, 1838–1847 (2015).
doi: 10.1128/MCB.00047-15 pubmed: 25776552 pmcid: 4405640
Friedman, J. R., Mourier, A., Yamada, J., McCaffery, J. M. & Nunnari, J. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. Elife 4, e07739 (2015).
doi: 10.7554/eLife.07739 pubmed: 25918844 pmcid: 4434539
Li, L. et al. PGC1α is required for the renoprotective effect of lncRNA Tug1 in vivo and links Tug1 with urea cycle metabolites. Cell Rep. 36, 109510 (2021).
doi: 10.1016/j.celrep.2021.109510 pubmed: 34380028 pmcid: 8369494
Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).
doi: 10.1038/nature26155 pubmed: 29512652 pmcid: 5951633
Falkevall, A. et al. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. Cell Metab. 25, 713–726 (2017).
doi: 10.1016/j.cmet.2017.01.004 pubmed: 28190774
Long, J. et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126, 4205–4218 (2016).
doi: 10.1172/JCI87927 pubmed: 27760051 pmcid: 5096930
Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e785 (2019).
doi: 10.1016/j.cmet.2019.08.003 pubmed: 31474566 pmcid: 7054893
Sims, N. R. & Anderson, M. F. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat. Protoc. 3, 1228–1239 (2008).
doi: 10.1038/nprot.2008.105 pubmed: 18600228
Clayton, D. A. & Shadel, G. S. Purification of mitochondria by sucrose step density gradient centrifugation. Cold Spring Harb. Protoc. 2014, pdb prot080028 (2014).
doi: 10.1101/pdb.prot080028 pubmed: 25275106
Divakaruni, A. S. & Jastroch, M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat. Metab. 4, 978–994 (2022).
doi: 10.1038/s42255-022-00619-4 pubmed: 35971004 pmcid: 9618452
Teixeira, R. B., Karbasiafshar, C., Sabra, M. & Abid, M. R. Optimization of mito-roGFP protocol to measure mitochondrial oxidative status in human coronary artery endothelial cells. STAR Protoc. 2, 100753 (2021).
doi: 10.1016/j.xpro.2021.100753 pubmed: 34458871 pmcid: 8377591
Wittig, I., Braun, H. P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).
doi: 10.1038/nprot.2006.62 pubmed: 17406264
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012).
doi: 10.1038/nprot.2012.058 pubmed: 22653162
Agbas, A., Krishnamurthy, P., Michaelis, M. L. & Michaelis, E. K. Mitochondrial electron transfer cascade enzyme activity assessment in cultured neurons and select brain regions. Curr. Protoc. Toxicol. 80, e73 (2019).
doi: 10.1002/cptx.73 pubmed: 30951613 pmcid: 6585421
Frazier, A. E., Vincent, A. E., Turnbull, D. M., Thorburn, D. R. & Taylor, R. W. Assessment of mitochondrial respiratory chain enzymes in cells and tissues. Methods Cell Biol. 155, 121–156 (2020).
doi: 10.1016/bs.mcb.2019.11.007 pubmed: 32183956
Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2alpha axis. Mol. Cell 74, 877–890.e876 (2019).
doi: 10.1016/j.molcel.2019.03.031 pubmed: 31023583 pmcid: 6555668
Latorre-Muro, P. et al. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab. 33, 598–614.e597 (2021).
doi: 10.1016/j.cmet.2021.01.013 pubmed: 33592173 pmcid: 7962155
Sood, A. et al. A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc. Natl. Acad. Sci. USA. 111, 16017–16022 (2014).
doi: 10.1073/pnas.1408061111 pubmed: 25352671 pmcid: 4234614
Matinyan, N. et al. Multiplexed drug-based selection and counterselection genetic manipulations in Drosophila. Cell Rep. 36, 109700 (2021).
doi: 10.1016/j.celrep.2021.109700 pubmed: 34525356 pmcid: 8480232
Saltzman, A. B. et al. gpGrouper: A peptide grouping algorithm for gene-centric inference and quantitation of bottom-up proteomics data. Mol. Cell. Proteomics 17, 2270–2283 (2018).
doi: 10.1074/mcp.TIR118.000850 pubmed: 30093420 pmcid: 6210220
Han, S. et al. Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem. Biol. 24, 404–414 (2017).
doi: 10.1016/j.chembiol.2017.02.002 pubmed: 28238724 pmcid: 5886301
Long, J. et al. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1. J. Biol. Chem. 295, 15840–15852 (2020).
doi: 10.1074/jbc.RA120.013228 pubmed: 32467232 pmcid: 7681008
Namba, T. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. Sci. Adv. 5, eaaw1386 (2019).
doi: 10.1126/sciadv.aaw1386 pubmed: 31206022 pmcid: 6561740
Manders, E. M. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375–382 (1993).
doi: 10.1111/j.1365-2818.1993.tb03313.x pubmed: 33930978
Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).
doi: 10.1111/j.1365-2818.2006.01706.x pubmed: 17210054
Oneto, M. et al. Nanoscale distribution of nuclear sites by super-resolved image cross-correlation spectroscopy. Biophys. J. 117, 2054–2065 (2019).
doi: 10.1016/j.bpj.2019.10.036 pubmed: 31732142 pmcid: 6895719
Ovesný, M., Křížek, P., Borkovec, J., Svindrych, Z. & Hagen, G. M. ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).
doi: 10.1093/bioinformatics/btu202 pubmed: 24771516 pmcid: 4207427
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
doi: 10.1016/j.jsb.2005.07.007 pubmed: 16182563
Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
doi: 10.1038/nmeth.4193 pubmed: 28250466 pmcid: 5494038
Chen, M. et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 16, 1161–1168 (2019).
doi: 10.1038/s41592-019-0591-8 pubmed: 31611690 pmcid: 6858567
Zheng, W. et al. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods 1, 100014 (2021).
doi: 10.1016/j.crmeth.2021.100014 pubmed: 34355210 pmcid: 8336924
Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I(2)III(2)IV(2). Cell 170, 1247–1257 e1212 (2017).
doi: 10.1016/j.cell.2017.07.050 pubmed: 28844695
Christie, D. A. et al. Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Mol. Cell. Biol. 31, 3845–3856 (2011).
doi: 10.1128/MCB.05393-11 pubmed: 21746876 pmcid: 3165718

Auteurs

Koki Mise (K)

Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan.

Jianyin Long (J)

Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Daniel L Galvan (DL)

Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Zengchun Ye (Z)

Division of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Guizhen Fan (G)

Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Rajesh Sharma (R)

Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Irina I Serysheva (II)

Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Travis I Moore (TI)

Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Collene R Jeter (CR)

Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

M Anna Zal (M)

Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Motoo Araki (M)

Department of Urology, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan.

Jun Wada (J)

Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan.

Paul T Schumacker (PT)

Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Benny H Chang (BH)

Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Farhad R Danesh (FR)

Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. fdanesh@mdanderson.org.
Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA. fdanesh@mdanderson.org.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH