ImmunoPET imaging of TIGIT in the glioma microenvironment.

Brain tumor Glioma Immunosuppression Immunotherapy TIGIT

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 Mar 2024
Historique:
received: 12 04 2023
accepted: 22 02 2024
medline: 5 3 2024
pubmed: 5 3 2024
entrez: 4 3 2024
Statut: epublish

Résumé

Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [

Identifiants

pubmed: 38438420
doi: 10.1038/s41598-024-55296-y
pii: 10.1038/s41598-024-55296-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5305

Subventions

Organisme : NIH HHS
ID : NIH P30 CA047904
Pays : United States
Organisme : NIH HHS
ID : NIH R01CA244520
Pays : United States
Organisme : NIH HHS
ID : NIH P30 CA047904
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Lah, T. T., Novak, M. & Breznik, B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol 60, 262–273 (2020).
doi: 10.1016/j.semcancer.2019.10.010 pubmed: 31654711
Tan, A. C. et al. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 70(4), 299–312 (2020).
doi: 10.3322/caac.21613 pubmed: 32478924
Ratnam, N. M. et al. Clinical correlates for immune checkpoint therapy: significance for CNS malignancies. Neurooncol. Adv. 3(1), vdaa161 (2021).
pubmed: 33506203
Patel, S. P. & Kurzrock, R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14(4), 847–856 (2015).
doi: 10.1158/1535-7163.MCT-14-0983 pubmed: 25695955
Xu, Y. et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: A meta-analysis of randomized controlled trials. Transl. Lung. Cancer Res. 8(4), 413–428 (2019).
doi: 10.21037/tlcr.2019.08.09 pubmed: 31555516 pmcid: 6749123
Hettich, M. et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10), 1629–1640 (2016).
doi: 10.7150/thno.15253 pubmed: 27446497 pmcid: 4955062
Harjunpaa, H. & Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200(2), 108–119 (2020).
doi: 10.1111/cei.13407 pubmed: 31828774
Yeo, J. et al. TIGIT/CD226 Axis regulates anti-tumor immunity. Pharmaceuticals. 14(3), 200 (2021).
doi: 10.3390/ph14030200 pubmed: 33670993 pmcid: 7997242
Raphael, I. et al. TIGIT and PD-1 immune checkpoint pathways are associated with patient outcome and anti-tumor immunity in glioblastoma. Front. Immunol. 12, 637146 (2021).
doi: 10.3389/fimmu.2021.637146 pubmed: 34025646 pmcid: 8137816
Hung, A. L. et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 7(8), e1466769 (2018).
doi: 10.1080/2162402X.2018.1466769 pubmed: 30221069 pmcid: 6136875
Shaffer, T., Natarajan, A. & Gambhir, S. S. PET imaging of TIGIT expression on tumor-infiltrating lymphocytes. Clin. Cancer Res. 27(7), 1932–1940 (2021).
doi: 10.1158/1078-0432.CCR-20-2725 pubmed: 33408249
Wang, X. et al. Preclinical and exploratory human studies of novel (68)Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur. J. Nucl. Med. Mol. Imaging 49(8), 2584–2594 (2022).
doi: 10.1007/s00259-021-05672-x pubmed: 35037984 pmcid: 8761874
Nigam, S. et al. Preclinical ImmunoPET imaging of glioblastoma-infiltrating myeloid cells using zirconium-89 Labeled anti-CD11b antibody. Mol. Imaging Biol. 22(3), 685–694 (2020).
doi: 10.1007/s11307-019-01427-1 pubmed: 31529407 pmcid: 7073275
Abdelfattah, N. et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13(1), 767 (2022).
doi: 10.1038/s41467-022-28372-y pubmed: 35140215 pmcid: 8828877
Thomson, Z. et al. Trimodal single-cell profiling reveals a novel pediatric CD8alphaalpha(+) T cell subset and broad age-related molecular reprogramming across the T cell compartment. Nat. Immunol. 24(11), 1947–1959 (2023).
doi: 10.1038/s41590-023-01641-8 pubmed: 37845489 pmcid: 10602854
Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12(1), 2965 (2021).
doi: 10.1038/s41467-021-23324-4 pubmed: 34017005 pmcid: 8137700
Vosjan, M. J. et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 5(4), 739–743 (2010).
doi: 10.1038/nprot.2010.13 pubmed: 20360768
Sun, Z. et al. Assessment of novel mesothelin-specific human antibody domain VH-Fc fusion proteins-based PET Agents. ACS Omega 8(46), 43586–43595 (2023).
doi: 10.1021/acsomega.3c04492 pubmed: 38027361 pmcid: 10666227
Sharma, S. K. et al. A rapid bead-based radioligand binding assay for the determination of target-binding fraction and quality control of radiopharmaceuticals. Nucl. Med. Biol. 71, 32–38 (2019).
doi: 10.1016/j.nucmedbio.2019.04.005 pubmed: 31128476 pmcid: 6599726
Hoffmann, U. et al. Pharmacokinetic mapping of the breast: A new method for dynamic MR mammography. Magn. Reson. Med. 33(4), 506–514 (1995).
doi: 10.1002/mrm.1910330408 pubmed: 7776881
Ortuño, J. E. et al. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics 14, 316 (2013).
doi: 10.1186/1471-2105-14-316 pubmed: 24180558 pmcid: 4228420
J.M. Chauvin, and H.M. Zarour, TIGIT in cancer immunotherapy. J. Immunother. Cancer., 2020. 8(2).
Harjunpää, H. & Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200(2), 108–119 (2019).
doi: 10.1111/cei.13407 pubmed: 31828774 pmcid: 7160651
He, Y. et al. Contribution of inhibitory receptor TIGIT to NK cell education. J. Autoimmun. 81, 1–12 (2017).
doi: 10.1016/j.jaut.2017.04.001 pubmed: 28438433
Frederico, S. C. et al. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front. Oncol. 10(11), 672508 (2021).
doi: 10.3389/fonc.2021.672508
Manieri, N. A., Chiang, E. Y. & Grogan, J. L. TIGIT: A key inhibitor of the cancer immunity cycle. Trends Immunol. 38(1), 20–28 (2017).
doi: 10.1016/j.it.2016.10.002 pubmed: 27793572
Tang, D. G. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22(3), 457–472 (2012).
doi: 10.1038/cr.2012.13 pubmed: 22357481 pmcid: 3292302
Nedrow, J. R. et al. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res. 7(1), 57 (2017).
doi: 10.1186/s13550-017-0303-2 pubmed: 28721684 pmcid: 5515722
Nedrow, J. R. et al. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of Anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J. Nucl. Med. 58(10), 1560–1566 (2017).
doi: 10.2967/jnumed.117.193268 pubmed: 28522738 pmcid: 5632734
Himes, B. T. et al. Immunosuppression in glioblastoma: Current understanding and therapeutic implications. Front. Oncol. 11, 770561 (2021).
doi: 10.3389/fonc.2021.770561 pubmed: 34778089 pmcid: 8581618
Wen, J. et al. A pan-cancer analysis revealing the role of TIGIT in tumor microenvironment. Sci. Rep. 11(1), 22502 (2021).
doi: 10.1038/s41598-021-01933-9 pubmed: 34795387 pmcid: 8602416

Auteurs

Sarah R Vincze (SR)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Ambika P Jaswal (AP)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Stephen C Frederico (SC)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Michal Nisnboym (M)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel.

Bo Li (B)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Zujian Xiong (Z)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

ReidAnn E Sever (RE)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Chaim T Sneiderman (CT)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Mikayla Rodgers (M)

Department of Biochemistry, University of Missouri, Columbia, MO, USA.

Kathryn E Day (KE)

In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.

Joseph D Latoche (JD)

In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.

Lesley M Foley (LM)

In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.

T Kevin Hitchens (TK)

In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.

Robin Frederick (R)

In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.

Ravi B Patel (RB)

Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

Costas G Hadjipanayis (CG)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Itay Raphael (I)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Jessie R Nedrow (JR)

In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. nedrowj@upmc.edu.
Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. nedrowj@upmc.edu.

W Barry Edwards (WB)

Department of Biochemistry, University of Missouri, Columbia, MO, USA. wbe59z@missouri.edu.

Gary Kohanbash (G)

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. gary.kohanbash2@chp.edu.
Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA. gary.kohanbash2@chp.edu.

Classifications MeSH