ImmunoPET imaging of TIGIT in the glioma microenvironment.
Brain tumor
Glioma
Immunosuppression
Immunotherapy
TIGIT
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 Mar 2024
04 Mar 2024
Historique:
received:
12
04
2023
accepted:
22
02
2024
medline:
5
3
2024
pubmed:
5
3
2024
entrez:
4
3
2024
Statut:
epublish
Résumé
Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [
Identifiants
pubmed: 38438420
doi: 10.1038/s41598-024-55296-y
pii: 10.1038/s41598-024-55296-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5305Subventions
Organisme : NIH HHS
ID : NIH P30 CA047904
Pays : United States
Organisme : NIH HHS
ID : NIH R01CA244520
Pays : United States
Organisme : NIH HHS
ID : NIH P30 CA047904
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Lah, T. T., Novak, M. & Breznik, B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol 60, 262–273 (2020).
doi: 10.1016/j.semcancer.2019.10.010
pubmed: 31654711
Tan, A. C. et al. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 70(4), 299–312 (2020).
doi: 10.3322/caac.21613
pubmed: 32478924
Ratnam, N. M. et al. Clinical correlates for immune checkpoint therapy: significance for CNS malignancies. Neurooncol. Adv. 3(1), vdaa161 (2021).
pubmed: 33506203
Patel, S. P. & Kurzrock, R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14(4), 847–856 (2015).
doi: 10.1158/1535-7163.MCT-14-0983
pubmed: 25695955
Xu, Y. et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: A meta-analysis of randomized controlled trials. Transl. Lung. Cancer Res. 8(4), 413–428 (2019).
doi: 10.21037/tlcr.2019.08.09
pubmed: 31555516
pmcid: 6749123
Hettich, M. et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10), 1629–1640 (2016).
doi: 10.7150/thno.15253
pubmed: 27446497
pmcid: 4955062
Harjunpaa, H. & Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200(2), 108–119 (2020).
doi: 10.1111/cei.13407
pubmed: 31828774
Yeo, J. et al. TIGIT/CD226 Axis regulates anti-tumor immunity. Pharmaceuticals. 14(3), 200 (2021).
doi: 10.3390/ph14030200
pubmed: 33670993
pmcid: 7997242
Raphael, I. et al. TIGIT and PD-1 immune checkpoint pathways are associated with patient outcome and anti-tumor immunity in glioblastoma. Front. Immunol. 12, 637146 (2021).
doi: 10.3389/fimmu.2021.637146
pubmed: 34025646
pmcid: 8137816
Hung, A. L. et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 7(8), e1466769 (2018).
doi: 10.1080/2162402X.2018.1466769
pubmed: 30221069
pmcid: 6136875
Shaffer, T., Natarajan, A. & Gambhir, S. S. PET imaging of TIGIT expression on tumor-infiltrating lymphocytes. Clin. Cancer Res. 27(7), 1932–1940 (2021).
doi: 10.1158/1078-0432.CCR-20-2725
pubmed: 33408249
Wang, X. et al. Preclinical and exploratory human studies of novel (68)Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. Eur. J. Nucl. Med. Mol. Imaging 49(8), 2584–2594 (2022).
doi: 10.1007/s00259-021-05672-x
pubmed: 35037984
pmcid: 8761874
Nigam, S. et al. Preclinical ImmunoPET imaging of glioblastoma-infiltrating myeloid cells using zirconium-89 Labeled anti-CD11b antibody. Mol. Imaging Biol. 22(3), 685–694 (2020).
doi: 10.1007/s11307-019-01427-1
pubmed: 31529407
pmcid: 7073275
Abdelfattah, N. et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13(1), 767 (2022).
doi: 10.1038/s41467-022-28372-y
pubmed: 35140215
pmcid: 8828877
Thomson, Z. et al. Trimodal single-cell profiling reveals a novel pediatric CD8alphaalpha(+) T cell subset and broad age-related molecular reprogramming across the T cell compartment. Nat. Immunol. 24(11), 1947–1959 (2023).
doi: 10.1038/s41590-023-01641-8
pubmed: 37845489
pmcid: 10602854
Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12(1), 2965 (2021).
doi: 10.1038/s41467-021-23324-4
pubmed: 34017005
pmcid: 8137700
Vosjan, M. J. et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 5(4), 739–743 (2010).
doi: 10.1038/nprot.2010.13
pubmed: 20360768
Sun, Z. et al. Assessment of novel mesothelin-specific human antibody domain VH-Fc fusion proteins-based PET Agents. ACS Omega 8(46), 43586–43595 (2023).
doi: 10.1021/acsomega.3c04492
pubmed: 38027361
pmcid: 10666227
Sharma, S. K. et al. A rapid bead-based radioligand binding assay for the determination of target-binding fraction and quality control of radiopharmaceuticals. Nucl. Med. Biol. 71, 32–38 (2019).
doi: 10.1016/j.nucmedbio.2019.04.005
pubmed: 31128476
pmcid: 6599726
Hoffmann, U. et al. Pharmacokinetic mapping of the breast: A new method for dynamic MR mammography. Magn. Reson. Med. 33(4), 506–514 (1995).
doi: 10.1002/mrm.1910330408
pubmed: 7776881
Ortuño, J. E. et al. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics 14, 316 (2013).
doi: 10.1186/1471-2105-14-316
pubmed: 24180558
pmcid: 4228420
J.M. Chauvin, and H.M. Zarour, TIGIT in cancer immunotherapy. J. Immunother. Cancer., 2020. 8(2).
Harjunpää, H. & Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200(2), 108–119 (2019).
doi: 10.1111/cei.13407
pubmed: 31828774
pmcid: 7160651
He, Y. et al. Contribution of inhibitory receptor TIGIT to NK cell education. J. Autoimmun. 81, 1–12 (2017).
doi: 10.1016/j.jaut.2017.04.001
pubmed: 28438433
Frederico, S. C. et al. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front. Oncol. 10(11), 672508 (2021).
doi: 10.3389/fonc.2021.672508
Manieri, N. A., Chiang, E. Y. & Grogan, J. L. TIGIT: A key inhibitor of the cancer immunity cycle. Trends Immunol. 38(1), 20–28 (2017).
doi: 10.1016/j.it.2016.10.002
pubmed: 27793572
Tang, D. G. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22(3), 457–472 (2012).
doi: 10.1038/cr.2012.13
pubmed: 22357481
pmcid: 3292302
Nedrow, J. R. et al. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res. 7(1), 57 (2017).
doi: 10.1186/s13550-017-0303-2
pubmed: 28721684
pmcid: 5515722
Nedrow, J. R. et al. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of Anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J. Nucl. Med. 58(10), 1560–1566 (2017).
doi: 10.2967/jnumed.117.193268
pubmed: 28522738
pmcid: 5632734
Himes, B. T. et al. Immunosuppression in glioblastoma: Current understanding and therapeutic implications. Front. Oncol. 11, 770561 (2021).
doi: 10.3389/fonc.2021.770561
pubmed: 34778089
pmcid: 8581618
Wen, J. et al. A pan-cancer analysis revealing the role of TIGIT in tumor microenvironment. Sci. Rep. 11(1), 22502 (2021).
doi: 10.1038/s41598-021-01933-9
pubmed: 34795387
pmcid: 8602416