Assessment of parental mosaicism rates in neurodevelopmental disorders caused by apparent de novo pathogenic variants using deep sequencing.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 Mar 2024
Historique:
received: 28 11 2023
accepted: 31 01 2024
medline: 5 3 2024
pubmed: 5 3 2024
entrez: 4 3 2024
Statut: epublish

Résumé

While de novo variants (DNV) are overall at low risk of recurrence in subsequent pregnancies, a subset is at high risk due to parental mosaicism. Accurately identifying cases of parental mosaicism is therefore important for genetic counseling in clinical care. Some studies have investigated the rate of parental mosaics, but most were either limited by the sensitivity of the techniques (i.e. exome or genome sequencing), or focused on specific types of disease such as epileptic syndromes. This study aimed to determine the proportion of parental mosaicism among the DNV causing neurodevelopmental disorders (NDDs) in a series not enriched in epilepsy syndromes. We collected 189 patients with NDD-associated DNV. We applied a smMIP enrichment method and sequenced parental blood DNA samples to an average depth of 7000x. Power simulation indicated that mosaicism with an allelic fraction of 0.5% would have been detected for 87% of positions with 90% power. We observed seven parental mosaic variants (3.7% of families), of which four (2.1% of families) had an allelic fraction of less than 1%. In total, our study identifies a relatively low proportion of parental mosaicism in NDD-associated DNVs and raises the question of a biological mechanism behind the higher rates of parental mosaicism detected in other studies, particularly those focusing on epileptic syndromes.

Identifiants

pubmed: 38438430
doi: 10.1038/s41598-024-53358-9
pii: 10.1038/s41598-024-53358-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5289

Informations de copyright

© 2024. The Author(s).

Références

Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
doi: 10.1038/nature21062
Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022).
doi: 10.1038/s41588-022-01104-0 pubmed: 35982160 pmcid: 9653013
Breuss, M. W., Yang, X. & Gleeson, J. G. Sperm mosaicism: Implications for genomic diversity and disease. Trends Genet. TIG 37, 890–902 (2021).
doi: 10.1016/j.tig.2021.05.007 pubmed: 34158173
Jónsson, H. et al. Parental influence on human germline de novo mutations in 1548 trios from Iceland. Nature 549, 519–522 (2017).
doi: 10.1038/nature24018 pubmed: 28959963
Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).
doi: 10.1038/nature11396 pubmed: 22914163 pmcid: 3548427
Bernkopf, M. et al. Personalized recurrence risk assessment following the birth of a child with a pathogenic de novo mutation. Nat. Commun. 14, 853 (2023).
doi: 10.1038/s41467-023-36606-w pubmed: 36792598 pmcid: 9932158
Frisk, S. et al. Detection of germline mosaicism in fathers of children with intellectual disability syndromes caused by de novo variants. Mol. Genet. Genomic Med. 10, e1880 (2022).
doi: 10.1002/mgg3.1880 pubmed: 35118825 pmcid: 9000944
Cao, Y. et al. A clinical survey of mosaic single nucleotide variants in disease-causing genes detected by exome sequencing. Genome Med. 11, 48 (2019).
doi: 10.1186/s13073-019-0658-2 pubmed: 31349857 pmcid: 6660700
Wright, C. F. et al. Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data. Nat. Commun. 10, 2985 (2019).
doi: 10.1038/s41467-019-11059-2 pubmed: 31278258 pmcid: 6611863
Gambin, T. et al. Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet. Med. Off. J. Am. Coll. Med. Genet. 22, 1768–1776 (2020).
Domogala, D. D. et al. Detection of low-level parental somatic mosaicism for clinically relevant SNVs and indels identified in a large exome sequencing dataset. Hum. Genom. 15, 72 (2021).
doi: 10.1186/s40246-021-00369-6
Tinker, R. J. et al. The contribution of mosaicism to genetic diseases and de novo pathogenic variants. Am. J. Med. Genet. A. https://doi.org/10.1002/ajmg.a.63309 (2023).
doi: 10.1002/ajmg.a.63309 pubmed: 37897121
Xu, X. et al. Amplicon resequencing identified parental mosaicism for approximately 10% of ‘de novo’ SCN1A mutations in children with Dravet syndrome. Hum. Mutat. 36, 861–872 (2015).
doi: 10.1002/humu.22819 pubmed: 26096185 pmcid: 5034833
Møller, R. S. et al. Parental mosaicism in epilepsies due to alleged de novo variants. Epilepsia 60, e63–e66 (2019).
doi: 10.1111/epi.15187 pubmed: 31077350
Shu, L. et al. Parental mosaicism in de novo neurodevelopmental diseases. Am. J. Med. Genet. A. 185, 2119–2125 (2021).
doi: 10.1002/ajmg.a.62174 pubmed: 33851778
Yang, X. et al. Genomic mosaicism in paternal sperm and multiple parental tissues in a Dravet syndrome cohort. Sci. Rep. 7, 15677 (2017).
doi: 10.1038/s41598-017-15814-7 pubmed: 29142202 pmcid: 5688122
Yang, X. et al. ATP1A3 mosaicism in families with alternating hemiplegia of childhood. Clin. Genet. 96, 43–52 (2019).
doi: 10.1111/cge.13539 pubmed: 30891744 pmcid: 6850116
Myers, C. T. et al. Parental mosaicism in ‘de novo’ epileptic encephalopathies. N. Engl. J. Med. 378, 1646–1648 (2018).
doi: 10.1056/NEJMc1714579 pubmed: 29694806 pmcid: 5966016
de Lange, I. M. et al. Assessment of parental mosaicism in SCN1A-related epilepsy by single-molecule molecular inversion probes and next-generation sequencing. J. Med. Genet. 56, 75–80 (2019).
doi: 10.1136/jmedgenet-2018-105672 pubmed: 30368457
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 405–424 (2015).
Boyle, E. A., O’Roak, B. J., Martin, B. K., Kumar, A. & Shendure, J. MIPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinform. Oxf. Engl. 30, 2670–2672 (2014).
doi: 10.1093/bioinformatics/btu353
Nicolas, G. et al. Somatic variants in autosomal dominant genes are a rare cause of sporadic Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 14, 1632–1639 (2018).
doi: 10.1016/j.jalz.2018.06.3056
Stosser, M. B. et al. High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders. Genet. Med. Off. J. Am. Coll. Med. Genet. 20, 403–410 (2018).
Latorre-Pellicer, A. et al. Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood. Sci. Rep. 11, 15459 (2021).
doi: 10.1038/s41598-021-94958-z pubmed: 34326454 pmcid: 8322329
Weichert, J., Schröer, A., Beyer, D. A., Gillessen-Kaesbach, G. & Stefanova, I. Cornelia de Lange syndrome: Antenatal diagnosis in two consecutive pregnancies due to rare gonadal mosaicism of NIPBL gene mutation. J. Matern. Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 24, 978–982 (2011).
Slavin, T. P. et al. Germline mosaicism in Cornelia de Lange syndrome. Am. J. Med. Genet. A. 158A, 1481–1485 (2012).
doi: 10.1002/ajmg.a.35381 pubmed: 22581668 pmcid: 3356507
Breuss, M. W. et al. Autism risk in offspring can be assessed through quantification of male sperm mosaicism. Nat. Med. 26, 143–150 (2020).
doi: 10.1038/s41591-019-0711-0 pubmed: 31873310
Jónsson, H. et al. Multiple transmissions of de novo mutations in families. Nat. Genet. 50, 1674–1680 (2018).
doi: 10.1038/s41588-018-0259-9 pubmed: 30397338
Pasmant, E. & Pacot, L. Should we genotype the sperm of fathers from patients with ‘de novo’ mutations?. Eur. J. Endocrinol. 182, C1–C3 (2020).
doi: 10.1530/EJE-19-0759 pubmed: 31658441

Auteurs

François Lecoquierre (F)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France. francois.lecoquierre@chu-rouen.fr.
Centre de Ressources Biologiques institutionnel du CHU de Rouen - Biothèque filière génétique, Rouen, France. francois.lecoquierre@chu-rouen.fr.

Kévin Cassinari (K)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Nathalie Drouot (N)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Angèle May (A)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Steeve Fourneaux (S)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Francoise Charbonnier (F)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Celine Derambure (C)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Sophie Coutant (S)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Pascale Saugier-Veber (P)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Alexander Hoischen (A)

Department of Human Genetics, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.

Camille Charbonnier (C)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Gaël Nicolas (G)

Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, F-76000, Rouen, France.

Classifications MeSH