Establishment of the deuterium oxide dilution method as a new possibility for determining the transendothelial water permeability.
D2O dilution method
Edema
Endothelial barrier function
Transendothelial water permeability
Journal
Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720
Informations de publication
Date de publication:
05 Mar 2024
05 Mar 2024
Historique:
received:
27
10
2023
accepted:
25
02
2024
revised:
01
02
2024
medline:
5
3
2024
pubmed:
5
3
2024
entrez:
4
3
2024
Statut:
aheadofprint
Résumé
Increase in transendothelial water permeability is an essential etiological factor in a variety of diseases like edema and shock. Despite the high clinical relevance, there has been no precise method to detect transendothelial water flow until now. The deuterium oxide (D
Identifiants
pubmed: 38438679
doi: 10.1007/s00424-024-02934-z
pii: 10.1007/s00424-024-02934-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Adderley SP, Zhang XE, Breslin JW (2015) Involvement of the H1 histamine receptor, p38 MAP kinase, myosin light chains kinase, and Rho/ROCK in histamine-induced endothelial barrier dysfunction. Microcirculation 22:237–248. https://doi.org/10.1111/micc.12189
doi: 10.1111/micc.12189
pubmed: 25582918
pmcid: 4412777
Ando K, Fukuhara S, Moriya T, Obara Y, Nakahata N, Mochizuki N (2013) Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organization. J Cell Biol 202:901–916. https://doi.org/10.1083/jcb.201301115
doi: 10.1083/jcb.201301115
pubmed: 24019534
pmcid: 3776352
Ashina K, Tsubosaka Y, Nakamura T, Omori K, Kobayashi K, Hori M, Ozaki H, Murata T (2015) Histamine induces vascular hyperpermeability by increasing blood flow and endothelial barrier disruption in vivo. PLoS ONE 10:e0132367. https://doi.org/10.1371/journal.pone.0132367
doi: 10.1371/journal.pone.0132367
pubmed: 26158531
pmcid: 4497677
Barkefors I, Le Jan S, Jakobsson L, Hejll E, Carlson G, Johansson H, Jarvius J, Park JW, Li Jeon N, Kreuger J (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2. J Biol Chem 283:13905–13912. https://doi.org/10.1074/jbc.M704917200
doi: 10.1074/jbc.M704917200
pubmed: 18347025
Benson K, Cramer S, Galla H-J (2013) Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS 10:5. https://doi.org/10.1186/2045-8118-10-5
doi: 10.1186/2045-8118-10-5
pubmed: 23305242
pmcid: 3560213
Birukova AA, Arce FT, Moldobaeva N, Dudek SM, Garcia JGN, Lal R, Birukov KG (2009) Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer. Nanomedicine 5:30–41. https://doi.org/10.1016/j.nano.2008.07.002
doi: 10.1016/j.nano.2008.07.002
pubmed: 18824415
Butler MJ, Down CJ, Foster RR, Satchell SC (2020) The pathological relevance of increased endothelial glycocalyx permeability. Am J Pathol 190:742–751. https://doi.org/10.1016/j.ajpath.2019.11.015
doi: 10.1016/j.ajpath.2019.11.015
pubmed: 32035881
pmcid: 7163249
Callesen KT, Yuste-Montalvo A, Poulsen LK, Jensen BM, Esteban V (2021) In vitro investigation of vascular permeability in endothelial cells from human artery, vein and lung microvessels at steady-state and anaphylactic conditions. Biomedicines 9:439. https://doi.org/10.3390/biomedicines9040439
doi: 10.3390/biomedicines9040439
pubmed: 33921871
pmcid: 8072631
Casnocha SA, Eskin SG, Hall ER, McIntire LV (1989) Permeability of human endothelial monolayers: effect of vasoactive agonists and cAMP. J Appl Physiol 67:1997–2005. https://doi.org/10.1152/jappl.1989.67.5.1997
doi: 10.1152/jappl.1989.67.5.1997
pubmed: 2480947
Choi H-C, Kim CSK, Tarran R (2015) Automated acquisition and analysis of airway surface liquid height by confocal microscopy. Am J Physiolo-Lung Cell Molecular Physiol 309:L109–L118. https://doi.org/10.1152/ajplung.00027.2015
doi: 10.1152/ajplung.00027.2015
Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40:828–839. https://doi.org/10.1007/s10439-011-0429-8
doi: 10.1007/s10439-011-0429-8
pubmed: 22009311
DiStefano PV, Smrcka AV, Glading AJ (2016) Phospholipase Cε modulates Rap1 activity and the endothelial barrier. PLoS ONE 11:e0162338. https://doi.org/10.1371/journal.pone.0162338
doi: 10.1371/journal.pone.0162338
pubmed: 27612188
pmcid: 5017709
Farmer PJ, Bernier SG, Lepage A, Guillemette G, Regoli D, Sirois P (2001) Permeability of endothelial monolayers to albumin is increased by bradykinin and inhibited by prostaglandins. Am J Physiol-Lung Cell Mol Physiol 280:L732–L738. https://doi.org/10.1152/ajplung.2001.280.4.L732
doi: 10.1152/ajplung.2001.280.4.L732
pubmed: 11238014
Flemming S, Burkard N, Renschler M, Vielmuth F, Meir M, Schick MA, Wunder C, Germer C-T, Spindler V, Waschke J, Schlegel N (2015) Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 107:32–44. https://doi.org/10.1093/cvr/cvv144
doi: 10.1093/cvr/cvv144
pubmed: 25975259
Funamoto K, Yoshino D, Matsubara K, Zervantonakis IK, Funamoto K, Nakayama M, Masamune J, Kimura Y, Kamm RD (2017) Endothelial monolayer permeability under controlled oxygen tension. Integr Biol 9:529–538. https://doi.org/10.1039/C7IB00068E
doi: 10.1039/C7IB00068E
Gaeggeler H-P, Guillod Y, Loffing-Cueni D, Loffing J, Rossier BC (2011) Vasopressin-dependent coupling between sodium transport and water flow in a mouse cortical collecting duct cell line. Kidney Int 79:843–852. https://doi.org/10.1038/ki.2010.486
doi: 10.1038/ki.2010.486
pubmed: 21178974
Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci 88:7896–7900. https://doi.org/10.1073/pnas.88.17.7896
doi: 10.1073/pnas.88.17.7896
pubmed: 1881923
pmcid: 52411
Gruber M, Weiss E, Siwetz M, Hiden U, Gauster M (2021) Flow-through isolation of human first trimester umbilical cord endothelial cells. Histochem Cell Biol 156:363–375. https://doi.org/10.1007/s00418-021-02007-7
doi: 10.1007/s00418-021-02007-7
pubmed: 34169358
pmcid: 8550006
Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta (BBA) - Biomembr 1778:660–669. https://doi.org/10.1016/j.bbamem.2007.07.012
Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Investig 52:2745–2756. https://doi.org/10.1172/JCI107470
doi: 10.1172/JCI107470
pubmed: 4355998
pmcid: 302542
Jiang Y, Wang C, Ma R, Zhao Y, Ma X, Wan J, Li C, Chen F, Fang F, Li M (2021) Aquaporin 1 mediates early responses to osmotic stimuli in endothelial cells via the calmodulin pathway. FEBS Open Bio 11:75–84. https://doi.org/10.1002/2211-5463.13020
doi: 10.1002/2211-5463.13020
pubmed: 33125833
Jovov B, Wills NK, Lewis SA (1991) A spectroscopic method for assessing confluence of epithelial cell cultures. Am J Physiol Cell Physiol 261:C1196–C1203. https://doi.org/10.1152/ajpcell.1991.261.6.C1196
doi: 10.1152/ajpcell.1991.261.6.C1196
Kempe S, Fois G, Brunner C, Hoffmann TK, Hahn J, Greve J (2020) Bradykinin signaling regulates solute permeability and cellular junction organization in lymphatic endothelial cells. Microcirculation 27. https://doi.org/10.1111/micc.12592
Kempe S, Fois G, Brunner C, Hoffmann TK, Hahn J, Greve J (2020) Bradykinin signaling regulates solute permeability and cellular junction organization in lymphatic endothelial cells. Microcirculation 27:1–13. https://doi.org/10.1111/micc.12592
doi: 10.1111/micc.12592
Koirala A, Pourafshar N, Daneshmand A, Wilcox CS, Mannemuddhu SS, Arora N (2023) Etiology and Management of Edema: A Review. Adv Kidney Dis Health 30:110–123. https://doi.org/10.1053/j.akdh.2022.12.002
doi: 10.1053/j.akdh.2022.12.002
pubmed: 36868727
Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170. https://doi.org/10.1021/bi00745a020
doi: 10.1021/bi00745a020
pubmed: 4795686
Lochbaum R, Hoffmann TK, Greve J, Hahn J (2023) Concomitant medication in patients with bradykinin‐mediated angioedema – there’s more than ACE inhibitors. JDDG: J Dtsch Dermatol Ges. https://doi.org/10.1111/ddg.15154
Martin MM, Lindqvist L (1975) The pH dependence of fluorescein fluorescence. J Lumin 10:381–390. https://doi.org/10.1016/0022-2313(75)90003-4
doi: 10.1016/0022-2313(75)90003-4
Martin-Ramirez J, Hofman M, van den Biggelaar M, Hebbel RP, Voorberg J (2012) Establishment of outgrowth endothelial cells from peripheral blood. Nat Protoc 7:1709–1715. https://doi.org/10.1038/nprot.2012.093
doi: 10.1038/nprot.2012.093
pubmed: 22918388
McMurdy J, Reichner J, Mathews Z, Markey M, Intwala S, Crawford G (2009) Broadband reflectance spectroscopy for establishing a quantitative metric of vascular leak using the Miles assay. J Biomed Opt 14:054012. https://doi.org/10.1117/1.3233654
doi: 10.1117/1.3233654
pubmed: 19895114
Mikelis CM, Simaan M, Ando K, Fukuhara S, Sakurai A, Amornphimoltham P, Masedunskas A, Weigert R, Chavakis T, Adams RH, Offermanns S, Mochizuki N, Zheng Y, Gutkind JS (2015) RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat Commun 6:6725. https://doi.org/10.1038/ncomms7725
doi: 10.1038/ncomms7725
pubmed: 25857352
Miyahara T, Hamanaka K, Weber DS, Drake DA, Anghelescu M, Parker JC (2007) Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs. Am J Physiol-Lung Cell Mol Physiol 293:L11–L21. https://doi.org/10.1152/ajplung.00279.2005
doi: 10.1152/ajplung.00279.2005
pubmed: 17322282
Neubauer D, Korbmacher J, Frick M, Kiss J, Timmler M, Dietl P, Wittekindt OH, Mizaikoff B (2013) Deuterium oxide dilution: a novel method to study apical water layers and transepithelial water transport. Anal Chem 85:4247–4250. https://doi.org/10.1021/ac4002723
doi: 10.1021/ac4002723
pubmed: 23560702
Ohmura T, Tian Y, Sarich N, Ke Y, Meliton A, Shah AS, Andreasson K, Birukov KG, Birukova AA (2017) Regulation of lung endothelial permeability and inflammatory responses by prostaglandin A2: role of EP4 receptor. Mol Biol Cell 28:1622–1635. https://doi.org/10.1091/mbc.e16-09-0639
doi: 10.1091/mbc.e16-09-0639
pubmed: 28428256
pmcid: 5469606
Shivanna M, Jalimarada SS, Srinivas SP (2010) Lovastatin inhibits the thrombin-induced loss of barrier integrity in bovine corneal endothelium. J Ocul Pharmacol Ther 26:1–10. https://doi.org/10.1089/jop.2009.0025
doi: 10.1089/jop.2009.0025
pubmed: 20148651
pmcid: 3096541
Stonebraker JR, Wagner D, Lefensty RW, Burns K, Gendler SJ, Bergelson JM, Boucher RC, O’Neal WK, Pickles RJ (2004) Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 78:13755–13768. https://doi.org/10.1128/JVI.78.24.13755-13768.2004
doi: 10.1128/JVI.78.24.13755-13768.2004
pubmed: 15564484
pmcid: 533903
Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934. https://doi.org/10.1038/ncb1752
doi: 10.1038/ncb1752
pubmed: 18604199
Tinsley JH, Wu MH, Ma W, Taulman AC, Yuan SY (1999) Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J Biol Chem 274:24930–24934. https://doi.org/10.1074/jbc.274.35.24930
doi: 10.1074/jbc.274.35.24930
pubmed: 10455168
Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R (2001) Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci 17:155–160. https://doi.org/10.2116/analsci.17.155
doi: 10.2116/analsci.17.155
pubmed: 11993654
Wong EYM, Morgan L, Smales C, Lang P, Gubby SE, Staddon JM (2000) Vascular endothelial growth factor stimulates dephosphorylation of the catenins p120 and p100 in endothelial cells. Biochem J 346:209–216. https://doi.org/10.1042/bj3460209
doi: 10.1042/bj3460209
pubmed: 10657259
pmcid: 1220842
Zhou L, Yang B, Wang Y, Zhang H, Chen R, Wang Y (2014) Bradykinin regulates the expression of claudin-5 in brain microvascular endothelial cells via calcium-induced calcium release. J Neurosci Res 92:597–606. https://doi.org/10.1002/jnr.23350
doi: 10.1002/jnr.23350
pubmed: 24464430