Expanded clinical phenotype and untargeted metabolomics analysis in RARS2-related mitochondrial disorder: a case report.
RARS2
Dysmorphic features
Lennox-Gastaut Syndrome
Mitochondrial disease
Untargeted metabolomics analysis
Journal
BMC neurology
ISSN: 1471-2377
Titre abrégé: BMC Neurol
Pays: England
ID NLM: 100968555
Informations de publication
Date de publication:
04 Mar 2024
04 Mar 2024
Historique:
received:
12
09
2023
accepted:
14
02
2024
medline:
5
3
2024
pubmed:
5
3
2024
entrez:
4
3
2024
Statut:
epublish
Résumé
RARS2-related mitochondrial disorder is an autosomal recessive mitochondrial encephalopathy caused by biallelic pathogenic variants in the gene encoding the mitochondrial arginyl-transfer RNA synthetase 2 (RARS2, MIM *611524, NM_020320.5). RARS2 catalyzes the transfer of L-arginine to its cognate tRNA during the translation of mitochondrially-encoded proteins. The classical presentation of RARS2-related mitochondrial disorder includes pontocerebellar hypoplasia (PCH), progressive microcephaly, profound developmental delay, feeding difficulties, and hypotonia. Most patients also develop severe epilepsy by three months of age, which consists of focal or generalized seizures that frequently become pharmacoresistant and lead to developmental and epileptic encephalopathy (DEE). Here, we describe a six-year-old boy with developmental delay, hypotonia, and failure to thrive who developed an early-onset DEE consistent with Lennox-Gastaut Syndrome (LGS), which has not previously been observed in this disorder. He had dysmorphic features including bilateral macrotia, overriding second toes, a depressed nasal bridge, retrognathia, and downslanting palpebral fissures, and he did not demonstrate progressive microcephaly. Whole genome sequencing identified two variants in RARS2, c.36 + 1G > T, a previously unpublished variant that is predicted to affect splicing and is, therefore, likely pathogenic and c.419 T > G (p.Phe140Cys), a known pathogenic variant. He exhibited significant, progressive generalized brain atrophy and ex vacuo dilation of the supratentorial ventricular system on brain MRI and did not demonstrate PCH. Treatment with a ketogenic diet (KD) reduced seizure frequency and enabled him to make developmental progress. Plasma untargeted metabolomics analysis showed increased levels of lysophospholipid and sphingomyelin-related metabolites. Our work expands the clinical spectrum of RARS2-related mitochondrial disorder, demonstrating that patients can present with dysmorphic features and an absence of progressive microcephaly, which can help guide the diagnosis of this condition. Our case highlights the importance of appropriate seizure phenotyping in this condition and indicates that patients can develop LGS, for which a KD may be a viable therapeutic option. Our work further suggests that analytes of phospholipid metabolism may serve as biomarkers of mitochondrial dysfunction.
Sections du résumé
BACKGROUND
BACKGROUND
RARS2-related mitochondrial disorder is an autosomal recessive mitochondrial encephalopathy caused by biallelic pathogenic variants in the gene encoding the mitochondrial arginyl-transfer RNA synthetase 2 (RARS2, MIM *611524, NM_020320.5). RARS2 catalyzes the transfer of L-arginine to its cognate tRNA during the translation of mitochondrially-encoded proteins. The classical presentation of RARS2-related mitochondrial disorder includes pontocerebellar hypoplasia (PCH), progressive microcephaly, profound developmental delay, feeding difficulties, and hypotonia. Most patients also develop severe epilepsy by three months of age, which consists of focal or generalized seizures that frequently become pharmacoresistant and lead to developmental and epileptic encephalopathy (DEE).
CASE PRESENTATION
METHODS
Here, we describe a six-year-old boy with developmental delay, hypotonia, and failure to thrive who developed an early-onset DEE consistent with Lennox-Gastaut Syndrome (LGS), which has not previously been observed in this disorder. He had dysmorphic features including bilateral macrotia, overriding second toes, a depressed nasal bridge, retrognathia, and downslanting palpebral fissures, and he did not demonstrate progressive microcephaly. Whole genome sequencing identified two variants in RARS2, c.36 + 1G > T, a previously unpublished variant that is predicted to affect splicing and is, therefore, likely pathogenic and c.419 T > G (p.Phe140Cys), a known pathogenic variant. He exhibited significant, progressive generalized brain atrophy and ex vacuo dilation of the supratentorial ventricular system on brain MRI and did not demonstrate PCH. Treatment with a ketogenic diet (KD) reduced seizure frequency and enabled him to make developmental progress. Plasma untargeted metabolomics analysis showed increased levels of lysophospholipid and sphingomyelin-related metabolites.
CONCLUSIONS
CONCLUSIONS
Our work expands the clinical spectrum of RARS2-related mitochondrial disorder, demonstrating that patients can present with dysmorphic features and an absence of progressive microcephaly, which can help guide the diagnosis of this condition. Our case highlights the importance of appropriate seizure phenotyping in this condition and indicates that patients can develop LGS, for which a KD may be a viable therapeutic option. Our work further suggests that analytes of phospholipid metabolism may serve as biomarkers of mitochondrial dysfunction.
Identifiants
pubmed: 38438854
doi: 10.1186/s12883-024-03571-w
pii: 10.1186/s12883-024-03571-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
87Informations de copyright
© 2024. The Author(s).
Références
Joseph JT, Innes AM, Smith AC, Vanstone MR, Schwartzentruber JA, Bulman DE, Majewski J, Daza RA, Hevner RF, Michaud J, Boycott KM; FORGE Canada Consortium. Neuropathologic features of pontocerebellar hypoplasia type 6. J Neuropathol Exp Neurol. 2014;73(11):1009–25. https://doi.org/10.1097/NEN.0000000000000123 .
Sevinç S, İnci A, Ezgü FS, Eminoğlu FT. A Patient with a Novel RARS2 Variant Exhibiting Liver Involvement as a New Clinical Feature and Review of the Literature. Mol Syndromol. 2022;13(3):226–234. https://doi.org/10.1159/000519604 .
Zhang Y, Yu Y, Zhao X, Xu Y, Chen L, Li N, Yao R, Wang J, Yu T. Novel RARS2 Variants: Updating the Diagnosis and Pathogenesis of Pontocerebellar Hypoplasia Type 6. Pediatr Neurol. 2022;131:30–41. https://doi.org/10.1016/j.pediatrneurol.2022.04.002 .
doi: 10.1016/j.pediatrneurol.2022.04.002
pubmed: 35468344
Glamuzina E, Brown R, Hogarth K, Saunders D, Russell-Eggitt I, Pitt M, de Sousa C, Rahman S, Brown G, Grunewald S. Further delineation of pontocerebellar hypoplasia type 6 due to mutations in the gene encoding mitochondrial arginyl-tRNA synthetase, RARS2. J Inherit Metab Dis. 2012;35(3):459–67. https://doi.org/10.1007/s10545-011-9413-6 .
doi: 10.1007/s10545-011-9413-6
pubmed: 22086604
Xu Y, Wu BB, Wang HJ, Zhou SZ, Cheng GQ, Zhou YF. A term neonate with early myoclonic encephalopathy caused by RARS2 gene variants: a case report. Transl Pediatr. 2020;9(5):707–12. https://doi.org/10.21037/tp-20-110 .
doi: 10.21037/tp-20-110.
pubmed: 33209735
pmcid: 7658767
de Valles-Ibáñez G, Hildebrand MS, Bahlo M, King C, Coleman M, Green TE, Goldsmith J, Davis S, Gill D, Mandelstam S, Scheffer IE, Sadleir LG. Infantile-onset myoclonic developmental and epileptic encephalopathy: A new RARS2 phenotype. Epilepsia Open. 2022;7(1):170–180. https://doi.org/10.1002/epi4.12553 .
Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656–67. https://doi.org/10.1021/ac901536h .
doi: 10.1021/ac901536h
pubmed: 19624122
Kastrissianakis K, Anand G, Quaghebeur G, Price S, Prabhakar P, Marinova J, Brown G, McShane T. Subdural effusions and lack of early pontocerebellar hypoplasia in siblings with RARS2 mutations. Arch Dis Child. 2013;98(12):1004–7. https://doi.org/10.1136/archdischild-2013-304308 .
doi: 10.1136/archdischild-2013-304308
pubmed: 24047924
Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81(4):857–62. https://doi.org/10.1086/521227 .
Tyynismaa H. Mitochondrial aminoacyl-tRNA synthetases. In: Wong LJC, editor. Mitochondrial disorders caused by nuclear genes. New York: Springer; 2013. p. 263–76.
doi: 10.1007/978-1-4614-3722-2_16
Nevanlinna V, Konovalova S, Ceulemans B, Muona M, Laari A, Hilander T, Gorski K, Valanne L, Anttonen AK, Tyynismaa H, Courage C, Lehesjoki AE. A patient with pontocerebellar hypoplasia type 6: Novel RARS2 mutations, comparison to previously published patients and clinical distinction from PEHO syndrome. Eur J Med Genet. 2020;63(3):103766. https://doi.org/10.1016/j.ejmg.2019.103766 .
Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination. J Neurodev Disord. 2019;11(1):29. https://doi.org/10.1186/s11689-019-9292-y .
doi: 10.1186/s11689-019-9292-y
pubmed: 31839000
pmcid: 6913031
van Berge L, Hamilton EM, Linnankivi T, Uziel G, Steenweg ME, Isohanni P, Wolf NI, Krägeloh-Mann I, Brautaset NJ, Andrews PI, de Jong BA, al Ghamdi M, van Wieringen WN, Tannous BA, Hulleman E, Würdinger T, van Berkel CG, Polder E, Abbink TE, Struys EA, Scheper GC, van der Knaap MS; LBSL Research Group. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation: clinical and genetic characterization and target for therapy. Brain. 2014;137(Pt 4):1019–29. https://doi.org/10.1093/brain/awu026 .
van der Knaap MS, van der Voorn P, Barkhof F, Van Coster R, Krägeloh-Mann I, Feigenbaum A, Blaser S, Vles JS, Rieckmann P, Pouwels PJ. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol. 2003;53(2):252–8. https://doi.org/10.1002/ana.10456 .
doi: 10.1002/ana.10456
pubmed: 12557294
Bendeck JL, Villamizar I, Prieto C, Celis LG. Mutación heterocigota, autosómica recesiva del gen RARS2 en una paciente colombiana de padres no consanguíneos [Autosomal recessive heterocygote mutation of the RARS2 gene in a Colombian patient with non- consanguineous parents]. Arch Argent Pediatr. 2022;120(1): e39-e48. Spanish. https://doi.org/10.5546/aap.2022.e39 .
Ngoh A, Bras J, Guerreiro R, Meyer E, McTague A, Dawson E, Mankad K, Gunny R, Clayton P, Mills PB, Thornton R, Lai M, Forsyth R, Kurian MA. RARS2 mutations in a sibship with infantile spasms. Epilepsia. 2016;57(5): e97-e102. https://doi.org/10.1111/epi.13358 .
Nishri D, Goldberg-Stern H, Noyman I, Blumkin L, Kivity S, Saitsu H, Nakashima M, Matsumoto N, Leshinsky-Silver E, Lerman-Sagie T, Lev D. RARS2 mutations cause early onset epileptic encephalopathy without ponto-cerebellar hypoplasia. Eur J Paediatr Neurol. 2016;20(3):412–7. https://doi.org/10.1016/j.ejpn.2016.02.012 .
doi: 10.1016/j.ejpn.2016.02.012
pubmed: 26970947
Kang HC, Lee YM, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48(1):82–8. https://doi.org/10.1111/j.1528-1167.2006.00906.x .
doi: 10.1111/j.1528-1167.2006.00906.x
pubmed: 17241212
Na JH, Kim HD, Lee YM. Effective and safe diet therapies for Lennox-Gastaut syndrome with mitochondrial dysfunction. Ther Adv Neurol Disord. 2020;6(13):1756286419897813. https://doi.org/10.1177/1756286419897813 .
doi: 10.1177/1756286419897813
Zweers H, van Wegberg AMJ, Janssen MCH, Wortmann SB. Ketogenic diet for mitochondrial disease: a systematic review on efficacy and safety. Orphanet J Rare Dis. 2021;16(1):295. https://doi.org/10.1186/s13023-021-01927-w .
doi: 10.1186/s13023-021-01927-w
pubmed: 34217336
pmcid: 8254320
Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:474296. https://doi.org/10.1155/2014/474296 .
Murofushi Y, Hayakawa I, Abe Y, Ohto T, Murayama K, Suzuki H, Takenouchi T, Kosaki K, Kubota M. Ketogenic Diet for KARS-Related Mitochondrial Dysfunction and Progressive Leukodystrophy. Neuropediatrics. 2022;53(1):65–8. https://doi.org/10.1055/s-0041-1732446 .
doi: 10.1055/s-0041-1732446
pubmed: 34448181
Steenweg ME, Ghezzi D, Haack T, Abbink TE, Martinelli D, van Berkel CG, Bley A, Diogo L, Grillo E, Te Water Naudé J, Strom TM, Bertini E, Prokisch H, van der Knaap MS, Zeviani M. Leukoencephalopathy with thalamus and brainstem involvement and high lactate “LTBL” caused by EARS2 mutations. Brain. 2012;135(Pt 5):1387–94. https://doi.org/10.1093/brain/aws070 .
doi: 10.1093/brain/aws070
pubmed: 22492562
Odom J, Amin H, Gijavanekar C, Elsea SH, Kralik S, Chinen J, Lin Y, Yates AMM, Mizerik E, Potocki L, Scaglia F. A phenotypic expansion of TRNT1 associated sideroblastic anemia with immunodeficiency, fevers, and developmental delay. Am J Med Genet A. 2022;188(1):259–68. https://doi.org/10.1002/ajmg.a.62482 .
doi: 10.1002/ajmg.a.62482
pubmed: 34510712
Buzkova J, Nikkanen J, Ahola S, Hakonen AH, Sevastianova K, Hovinen T, Yki-Järvinen H, Pietiläinen KH, Lönnqvist T, Velagapudi V, Carroll CJ, Suomalainen A. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol Med. 2018;10(12):e9091. https://doi.org/10.15252/emmm.201809091.PMID:30373890;PMCID:PMC6284386 .
doi: 10.15252/emmm.201809091.PMID:30373890;PMCID:PMC6284386
pubmed: 30373890
pmcid: 6284386
Rankin J, Brown R, Dobyns WB, Harington J, Patel J, Quinn M, et al. Pontocerebellar hypoplasia type 6: a British case with PEHO-like features. Am J Med Genet Part A. 2010;152(8):2079–84.
doi: 10.1002/ajmg.a.33531