Comprehensive molecular characterisation of the complete mitogenome of Ergasilus tumidus and phylogenetic relationships of Copepoda inferred from mitogenomes.
Ergasilus
gene order
mitogenome
phylogeny
Journal
Folia parasitologica
ISSN: 1803-6465
Titre abrégé: Folia Parasitol (Praha)
Pays: Czech Republic
ID NLM: 0065750
Informations de publication
Date de publication:
07 Feb 2024
07 Feb 2024
Historique:
received:
29
07
2023
accepted:
05
01
2024
medline:
5
3
2024
pubmed:
5
3
2024
entrez:
5
3
2024
Statut:
epublish
Résumé
Although parasitic copepods of the genus Ergasilus von Nordmann, 1832 are globally distributed parasites of fish, their phylogenetic relationships with other Copepoda are not clear, and the characteristics of their mitochondrial genomes (mitogenomes) are not thoroughly understood. The objective of this study was to address these knowledge gaps by sequencing the complete mitogenome of Ergasilus tumidus Markevich, 1940. The complete mitogenome (GenBank Acc. No. OQ596537) was 14,431 bp long and it comprised 13 protein-coding genes (PCGs), 22 tRNAs, two tRNAs, and two control regions (CRs). Phylogenetic analyses, conducted using concatenated nucleotide and amino acid sequences of 13 protein-coding genes, produced two partially incongruent topologies. While the order Calanoida was consistently resolved as the sister lineage to the other three orders, topological instability was observed in the relationships of the orders Cyclopoida, Siphonostomatoida and Harpacticoida. Siphonostomatoida clustered with Cyclopoida in the nucleotide-based phylogeny, but with Harpacticoida in the amino acid-based phylogeny. The latter topology conforms to the widely accepted relationships, but we speculate that the former topology is more likely to be the correct one. Our study provides a complete mitogenome sequence of E. tumidus, which helps us better understand the molecular evolution of the genus Ergasilus. Additionally, we suggest a different perspective on the controversial phylogenetic relationships among Siphonostomatoida, Cyclopoida and Harpacticoida, diverging from previously accepted views.
Identifiants
pubmed: 38440897
doi: 10.14411/fp.2024.002
doi:
pii:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Abdullah M., Khairurrijal K. 2009: A simple method for determining surface porosity based on SEM images using OriginPro software. Indones. J. Phys. 20: 37-40.
doi: 10.5614/itb.ijp.2009.20.2.4
Avise J.C., Arnold J., Ball R.M., Bermingham E., Lamb T., Neigel J.E., Reeb C.A., Saunders N.C. 1987: Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489-522.
doi: 10.1146/annurev.es.18.110187.002421
Benson G. 1999: Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 27: 573-580.
doi: 10.1093/nar/27.2.573
Bernot J.P., Boxshall G.A., Crandall K.A. 2021: A synthesis tree of the Copepoda: integrating phylogenetic and taxonomic data reveals multiple origins of parasitism. PeerJ. 9: e12034.
doi: 10.7717/peerj.12034
Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P.F. 2013: MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogen. Evol. 69: 313-319.
doi: 10.1016/j.ympev.2012.08.023
Boore J.L. 1999: Animal mitochondrial genomes. Nucl. Acids Res. 27: 1767-1780.
doi: 10.1093/nar/27.8.1767
Boxshall G.A., Defaye D. 2007: Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195-207.
doi: 10.1007/s10750-007-9014-4
Boxshall G.A., Jaume D. 2000: Making waves: the repeated colonization of fresh water by copepod crustaceans. Adv. Ecol. Res. 31: 61-79.
doi: 10.1016/S0065-2504(00)31007-8
Delgado P.M., Delgado J.P.M., Arenas J.V., Orbe R.I. 2011: Massive infestation by Perulernaea gamitanae (Crustacea: Cyclopoida: Lernaidae) in juvenile gamitana, cultured in the Peruvian Amazon. Vet. Mex. 42: 59-64.
Eyun S.I. 2017: Phylogenomic analysis of Copepoda (Arthropoda, Crustacea) reveals unexpected similarities with earlier proposed morphological phylogenies. BMC Evol. Biol. 17: 23.
doi: 10.1186/s12862-017-0883-5
Hadfield K.A., Smit N.J. 2019: Parasitic Crustacea as vectors. In N.J. Smit, N.L.Bruce and K.A. Hadfield (Eds.), Parasitic Crustacea. State of Knowledge and Future Trends. Springer, Cham, pp. 331-342.
doi: 10.1007/978-3-030-17385-2_7
Hu F., Lin Y., Tang J. 2014: MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinformatics 15: 354.
doi: 10.1186/s12859-014-0354-6
Hua C.J., Zhang D., Zou H., Li M., Jakovlić I., Wu S.G., Wang G.T., Li W.X. 2019: Morphology is not a reliable taxonomic tool for the genus Lernaea: molecular data and experimental infection reveal that L. cyprinacea and L. cruciata are conspecific. Parasit. Vectors 12: 579.
doi: 10.1186/s13071-019-3831-y
Huelsenbeck J.P., Hillis D.M. 1993: Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42: 247-264.
doi: 10.1093/sysbio/42.3.247
Huys R., Llewellyn-Hughes J., Conroy-Dalton S., Olson P.D., Spinks J.N., Johnston D.A. 2007: Extraordinary host switching in siphonostomatoid copepods and the demise of the Monstrilloida: integrating molecular data, ontogeny and antennulary morphology. Mol. Phylogen. Evol. 43: 368-378.
doi: 10.1016/j.ympev.2007.02.004
Huys R., Llewellyn-Hughes J., Olson P.D., Nagasawa K. 2006: Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida). Biol. J. Linn. Soc. 87: 403-425.
doi: 10.1111/j.1095-8312.2005.00579.x
Jakovlić I., Zou H., Zhao X.-M., Zhang J., Wang G.-T., Zhang D. 2021: Evolutionary history of inversions in directional mutational pressures in crustacean mitochondrial genomes: implications for evolutionary studies. Mol. Phylogen. Evol. 164: 107288.
doi: 10.1016/j.ympev.2021.107288
Jung S.-O., Lee Y.-M., Park T.-J., Park H.G., Hagiwara A., Leung K.M.Y., Dahms H.-U., Lee W., Lee J.-S. 2006: Thecomplete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. J. Exp. Mar. Biol. Ecol. 333: 251-262.
doi: 10.1016/j.jembe.2005.12.047
Kabata Z. 1979: Parasitic Copepoda of British Fishes. The Ray Society, British Museum, London, 468 pp.
Katoh K., Standley D.M. 2013: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780.
doi: 10.1093/molbev/mst010
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. 2012: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
doi: 10.1093/bioinformatics/bts199
Kilpert F., Podsiadlowski L. 2006: The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 7: 241.
doi: 10.1186/1471-2164-7-241
Kim J., Kern E., Kim T., Sim M., Kim J., Kim Y., Park C., Nadler S.A., Park J.-K. 2017: Phylogenetic analysis of two Plectus mitochondrial genomes (Nematoda: Plectida) supports a sister group relationship between Plectida and Rhabditida within Chromadorea. Mol. Phylogen. Evol. 107: 90-102.
doi: 10.1016/j.ympev.2016.10.010
Kuang P., Qian J. 1991: Economic Fauna of China: Parasitic Crustacea of Freshwater Fishes. Science Press, Beijing, 203 pp.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018: MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547.
doi: 10.1093/molbev/msy096
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017: PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773.
doi: 10.1093/molbev/msw260
Lester R.J., Hayward C.J. 2006: Phylum Arthropoda. In P.T.K. Woo (Ed.), Fish Diseases and Disorders. Volume 1: Protozoan and Metazoan Infections. CABI, Wallingford, pp. 466-565.
doi: 10.1079/9780851990156.0466
Letunic I., Bork P. 2019: Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids. Res. 47: W256-W259.
doi: 10.1093/nar/gkz239
Librado P., Rozas J. 2009: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.
doi: 10.1093/bioinformatics/btp187
Lohse M., Drechsel O., Bock R. 2007: OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274.
doi: 10.1007/s00294-007-0161-y
Lowe T.M., Eddy S.R. 1997: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25: 955-964.
doi: 10.1093/nar/25.5.955
Machida R.J., Miya M.U., Nishida M., Nishida S. 2004: Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332: 71-78.
doi: 10.1016/j.gene.2004.01.019
Mathews P.D., Patta A.C., Gama G.S., Mertins O. 2018: Infestation by Ergasilus coatiarus (Copepoda: Ergasilidae) in two Amazonian cichlids with new host record from Peru: an ectoparasites natural control approach. C. R. Biol. 341: 16-19.
doi: 10.1016/j.crvi.2017.12.001
Minxiao W., Song S., Chaolun L., Xin S. 2011: Distinctive mitochondrial genome of calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: useful molecular markers for phylogenetic and population studies. BMC Genomics 12: 73.
doi: 10.1186/1471-2164-12-73
Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. 2015: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274.
doi: 10.1093/molbev/msu300
Peng G., Gao Q., Song Y., Zhao Q., Luo Y., Nie P. 2010: Mitochondrial genes of Sinergasilus polycolpus (Copepoda, Ergasilidae) parasitizing the gills of fish. Acta. Hydrobiol. Sinica 34: 177-183.
doi: 10.3724/SP.J.1035.2010.00177
Perna N.T., Kocher T.D. 1995: Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358.
doi: 10.1007/BF01215182
Piasecki W., Goodwin A.E., Eiras J.C., Nowak B.F. 2004: Importance of Copepoda in freshwater aquaculture. Zool. Stud. 43: 193-205.
Rand D.M. 1994: Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends. Ecol. Evol. 9: 125-131.
doi: 10.1016/0169-5347(94)90176-7
Reuter J.S., Mathews D.H. 2010: RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 1-9.
doi: 10.1186/1471-2105-11-129
Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. 2012: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539-542.
doi: 10.1093/sysbio/sys029
Shao R., Barker S. 2007: Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134: 153-167.
doi: 10.1017/S0031182006001429
Song Y., Wang G. T., Yao W. J., Gao Q., Nie P. 2007: Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Poecilostomatoida) based on 18S and 28S rDNA sequences. Parasitol. Res. 102: 299-306.
doi: 10.1007/s00436-007-0764-8
Staton J.L., Daehler L.L., Brown W.M. 1997: Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes. Mol. Biol. Evol. 14: 867-874.
doi: 10.1093/oxfordjournals.molbev.a025828
Suzuki Y., Glazko G.V., Nei M. 2002: Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. USA 99: 16138-16143.
doi: 10.1073/pnas.212646199
Talavera G., Castresana J. 2007: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-577.
doi: 10.1080/10635150701472164
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
doi: 10.1093/molbev/mst197
Tung C.-H., Cheng Y.-R., Lin C.-Y., Ho J.-S., Kuo C.-H., Yu J.-K., Su Y.-H. 2014: A new copepod with transformed body plan and unique phylogenetic position parasitic in the acorn worm Ptychodera flava. Biol. Bull. 226: 69-80.
doi: 10.1086/BBLv226n1p69
Walter T.C.B., G. (Ed.) 2024: World of Copepods Database. Access year: 2024. Ergasilus von Nordmann, 1832., www.marinespecies.org
Wang N., Xiang Y., Fang L., Wang Y., Xin H., Li S. 2013: Patterns of gene duplication and their contribution to expansion of gene families in grapevine. Plant. Mol. Biol. Rep. 31: 852-861.
doi: 10.1007/s11105-013-0556-5
Xiang C.Y., Gao F., Jakovlić I., Lei H.P., Hu Y., Zhang H., Zou H., Wang G.T., Zhang D. 2023: Using PhyloSuite for molecular phylogeny and tree-based analyses. iMeta 2: e87.
doi: 10.1002/imt2.87
Zhang D., Li W.X., Zou H., Wu S.G., Li M., Jakovlić I., Zhang J., Chen R., Wang G. 2019: Homoplasy or plesiomorphy? Reconstruction of the evolutionary history of mitochondrial gene order rearrangements in the subphylum Neodermata. Int. J. Parasitol. 49: 819-829.
doi: 10.1016/j.ijpara.2019.05.010