A Mammalian-Based Synthetic Biology Toolbox to Engineer Membrane-Membrane Interfaces.
Cell-free expression
Membrane protein reconstitution
Membrane–membrane interfaces
Split protein reconstitution
SpyTag–SpyCatcher
Synthetic biology
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
5
3
2024
pubmed:
5
3
2024
entrez:
5
3
2024
Statut:
ppublish
Résumé
Intercellular membrane-membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane-membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane-membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.
Identifiants
pubmed: 38441757
doi: 10.1007/978-1-0716-3718-0_4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
43-58Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Belardi B, Son S, Felce JH et al (2020) Cell–cell interfaces as specialized compartments directing cell function. Nat Rev Mol Cell Biol 21:750–764
doi: 10.1038/s41580-020-00298-7
Yang BA, Westerhof TM, Sabin K et al (2021) Engineered tools to study intercellular communication. Adv Sci (Weinh) 8:2002825
doi: 10.1002/advs.202002825
James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–69
doi: 10.1038/nature11220
pmcid: 3393772
Otani T, Furuse M (2020) Tight junction structure and function revisited. Trends Cell Biol 30:805–817
doi: 10.1016/j.tcb.2020.08.004
Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532
doi: 10.1038/sj.jid.5700865
Südhof TC, Malenka RC (2008) Understanding synapses: past, present, and future. Neuron 60:469–476
doi: 10.1016/j.neuron.2008.10.011
pmcid: 3243741
Sjöqvist M, Andersson ER (2019) Do as I say, not(ch) as I do: lateral control of cell fate. Dev Biol 447:58–70
doi: 10.1016/j.ydbio.2017.09.032
Prinz WA, Toulmay A, Balla T (2019) The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21:7–24
doi: 10.1038/s41580-019-0180-9
Feinberg EH, VanHoven MK, Bendesky A et al (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363
doi: 10.1016/j.neuron.2007.11.030
Kanadome T, Hayashi K, Seto Y et al (2022) Development of intensiometric indicators for visualizing N-cadherin interaction across cells. Commun Biol 5:1–12
doi: 10.1038/s42003-022-04023-2
Schmid EM, Bakalar MH, Choudhuri K et al (2016) Size-dependent protein segregation at membrane interfaces. Nat Phys 12:704–711
doi: 10.1038/nphys3678
pmcid: 5152624
Belardi B, Son S, Vahey MD et al (2019) Claudin-4 reconstituted in unilamellar vesicles is sufficient to form tight interfaces that partition membrane proteins. J Cell Sci 132:jcs221556
Freeman SA, Goyette J, Furuya W et al (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164:128–140
doi: 10.1016/j.cell.2015.11.048
pmcid: 4715264
Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697
doi: 10.1073/pnas.1115485109
pmcid: 3311370
Feng S, Varshney A, Coto Villa D et al (2019) Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Communications Biology 2:1–12
doi: 10.1038/s42003-019-0589-x
Moghimianavval H, Patel C, Mohapatra S et al (2022) Engineering functional membrane–membrane interfaces by InterSpy. Small 19:e2202104
doi: 10.1002/smll.202202104
pmcid: 9789529
Keeble AH, Turkki P, Stokes S et al (2019) Approaching infinite affinity through engineering of peptide-protein interaction. Proc Natl Acad Sci U S A 116:26523–26533
doi: 10.1073/pnas.1909653116
pmcid: 6936558
Moghimianavval H, Hsu YY, Groaz A et al (2022) In vitro reconstitution platforms of mammalian cell-free expressed membrane proteins. Methods Mol Biol 2433:105–120
doi: 10.1007/978-1-0716-1998-8_6
pmcid: 8859695
Majumder S, Hsu YY, Moghimianavval H et al (2022) In vitro synthesis and reconstitution using mammalian cell-free lysates enables the systematic study of the regulation of LINC complex assembly. Biochemistry 61:1495–1507
doi: 10.1021/acs.biochem.2c00118
Sharma B, Moghimianavval H, Hwang SW et al (2021) Synthetic cell as a platform for understanding membrane-membrane interactions. Membranes (Basel) 11:912
doi: 10.3390/membranes11120912
Groaz A, Moghimianavval H, Tavella F et al (2021) Engineering spatiotemporal organization and dynamics in synthetic cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 13. https://doi.org/10.1002/wnan.1685
Mátés L, Chuah MKL, Belay E et al (2009) Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761
doi: 10.1038/ng.343