Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Mar 2024
Historique:
received: 08 10 2023
accepted: 14 02 2024
medline: 6 3 2024
pubmed: 6 3 2024
entrez: 5 3 2024
Statut: epublish

Résumé

The development of a robust quasi-ohmic contact with minimal resistance, good stability and cost-effectiveness is crucial for perovskite solar cells. We introduce a generic approach featuring a Lewis-acid layer sandwiched between dopant-free semicrystalline polymer and metal electrode in perovskite solar cells, resulting in an ideal quasi-ohmic contact even at elevated temperature up to 85 °C. The solubility of Lewis acid in alcohol facilitates nondestructive solution processing on top of polymer, which boosts hole injection from polymer into metal by two orders of magnitude. By integrating the polymer-acid-metal structure into solar cells, devices exhibit remarkable resilience, retaining 96% ± 3%, 96% ± 2% and 75% ± 7% of their initial efficiencies after continuous operation in nitrogen at 35 °C for 2212 h, 55 °C for 1650 h and 85 °C for 937 h, respectively. Leveraging the Arrhenius relation, we project an impressive T

Identifiants

pubmed: 38443353
doi: 10.1038/s41467-024-46145-7
pii: 10.1038/s41467-024-46145-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2002

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 62104031
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22175029

Informations de copyright

© 2024. The Author(s).

Références

Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).
doi: 10.1038/s41586-023-05825-y
Zhu, H. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023).
doi: 10.1038/s41578-023-00582-w
Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI
doi: 10.1038/s41586-021-03406-5
McMeekin, D. P. et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023).
doi: 10.1038/s41563-022-01399-8
Li, H. et al. Strategies for high-performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InfoMat 4, e12322 (2022).
doi: 10.1002/inf2.12322
Li, M. et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023).
doi: 10.1038/s41467-023-36224-6
Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).
doi: 10.1126/science.adf3349
Li, G. et al. Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).
doi: 10.1126/science.add7331
Chen, Q. et al. Stable one dimensional (1D)/three dimensional (3D) perovskite solar cell with an efficiency exceeding 23%. InfoMat 4, e12303 (2022).
doi: 10.1002/inf2.12303
Xie, L. et al. Multifunctional anchoring of O-ligands for high-performance and stable inverted perovskite solar cells. InfoMat 5, e12379 (2022).
doi: 10.1002/inf2.12379
Zhao, Y. et al. Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nat. Commun. 12, 2191 (2021).
doi: 10.1038/s41467-021-22472-x
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO
doi: 10.1038/s41586-021-03964-8
Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).
doi: 10.1038/s41586-021-03285-w
Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021).
doi: 10.1126/science.abb8687
Kim, M. et al. Conformal quantum dot-SnO
doi: 10.1126/science.abh1885
Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).
doi: 10.1038/s41586-019-1036-3
Kong, J. et al. CO
doi: 10.1038/s41586-021-03518-y
Liu, X. et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photonics 17, 96–105 (2022).
doi: 10.1038/s41566-022-01111-x
You, S. et al. Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 379, 288–294 (2023).
doi: 10.1126/science.add8786
Fu, Q. et al. Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144, 9500–9509 (2022).
doi: 10.1021/jacs.2c04029
Luo, J. et al. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci. 11, 2035–2045 (2018).
doi: 10.1039/C8EE00036K
Ren, Y. et al. Spirobifluorene with an asymmetric fluorenylcarbazolamine electron-donor as the hole transport material increases thermostability and efficiency of perovskite solar cells. Energy Environ. Sci. 16, 3534–3542 (2023).
doi: 10.1039/D3EE01284K
Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 17, 856–864 (2023).
doi: 10.1038/s41566-023-01247-4
Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).
doi: 10.1126/science.abf5602
Ye, F. et al. Overcoming C
doi: 10.1038/s41467-022-34203-x
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).
doi: 10.1038/s41566-019-0398-2
Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).
doi: 10.1126/science.abj2637
Xue, J. et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636–640 (2021).
doi: 10.1126/science.abd4860
Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).
doi: 10.1126/science.aay9698
Schloemer, T. H. et al. The molybdenum oxide interface limits the high-temperature operational stability of unencapsulated perovskite solar cells. ACS Energy Lett. 5, 2349–2360 (2020).
doi: 10.1021/acsenergylett.0c01023
Sanehira, E. M. et al. Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoO
doi: 10.1021/acsenergylett.6b00013
Zhang, C. et al. Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat 2, 1034–1056 (2020).
doi: 10.1002/inf2.12104
Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).
doi: 10.1126/science.aao5561
Zhao, Y. et al. A bilayer conducting polymer structure for planar perovskite solar cells with over 1400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2021).
doi: 10.1038/s41560-021-00953-z
Zhang, T. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022).
doi: 10.1126/science.abo2757
Wang, T. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377, 1227–1232 (2022).
doi: 10.1126/science.abq6235
Saito, M. et al. Significantly sensitized ternary blend polymer solar cells with a very small content of the narrow-band gap third component that utilizes optical interference. Macromolecules 53, 10623–10635 (2020).
doi: 10.1021/acs.macromol.0c01787
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
doi: 10.1038/s41560-019-0529-5
Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).
doi: 10.1126/science.abn5679
Burlingame, Q. et al. Intrinsically stable organic solar cells under high-intensity illumination. Nature 573, 394–397 (2019).
doi: 10.1038/s41586-019-1544-1
Kettle, J. et al. Using ISOS consensus test protocols for development of quantitative life test models in ageing of organic solar cells. Sol. Energy Mater. Sol. Cells 167, 53–59 (2017).
doi: 10.1016/j.solmat.2017.04.005
Burlingame, Q. et al. Reliability of small molecule organic photovoltaics with electron-filtering compound buffer layers. Adv. Energy Mater. 6, 1601094 (2016).
doi: 10.1002/aenm.201601094
Haillant, O., Dumbleton, D. & Zielnik, A. An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors. Sol. Energy Mater. Sol. Cells 95, 1889–1895 (2011).
doi: 10.1016/j.solmat.2011.02.013
Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).
doi: 10.1038/s41586-023-06610-7
Duan, L. et al. Stability challenges for the commercialization of perovskite-silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).
doi: 10.1038/s41578-022-00521-1

Auteurs

Junsheng Luo (J)

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China.
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China.

Bowen Liu (B)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.

Haomiao Yin (H)

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China.

Xin Zhou (X)

Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, FriedrichAlexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058, Erlangen, Germany.

Mingjian Wu (M)

Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, FriedrichAlexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058, Erlangen, Germany.

Hongyang Shi (H)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.

Jiyun Zhang (J)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.

Jack Elia (J)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.

Kaicheng Zhang (K)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.

Jianchang Wu (J)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.

Zhiqiang Xie (Z)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.

Chao Liu (C)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.

Junyu Yuan (J)

Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China.

Zhongquan Wan (Z)

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China. zqwan@uestc.edu.cn.
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China. zqwan@uestc.edu.cn.

Thomas Heumueller (T)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.

Larry Lüer (L)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.

Erdmann Spiecker (E)

Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, FriedrichAlexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058, Erlangen, Germany.

Ning Li (N)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, PR China.

Chunyang Jia (C)

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China. cyjia@uestc.edu.cn.
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China. cyjia@uestc.edu.cn.

Christoph J Brabec (CJ)

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany. christoph.brabec@fau.de.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany. christoph.brabec@fau.de.

Yicheng Zhao (Y)

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China. zhaoyicheng@uestc.edu.cn.
Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany. zhaoyicheng@uestc.edu.cn.

Classifications MeSH