Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 Mar 2024
Historique:
received: 19 05 2023
accepted: 12 01 2024
medline: 6 3 2024
pubmed: 6 3 2024
entrez: 5 3 2024
Statut: epublish

Résumé

Dark-blood late gadolinium enhancement (LGE) has been shown to improve the visualization and quantification of areas of ischemic scar compared to standard bright-blood LGE. Recently, the performance of various semi-automated quantification methods has been evaluated for the assessment of infarct size using both dark-blood LGE and conventional bright-blood LGE with histopathology as a reference standard. However, the impact of this sequence on different quantification strategies in vivo remains uncertain. In this study, various semi-automated scar quantification methods were evaluated for a range of different ischemic and non-ischemic pathologies encountered in clinical practice. A total of 62 patients referred for clinical cardiovascular magnetic resonance (CMR) were retrospectively included. All patients had a confirmed diagnosis of either ischemic heart disease (IHD; n = 21), dilated/non-ischemic cardiomyopathy (NICM; n = 21), or hypertrophic cardiomyopathy (HCM; n = 20) and underwent CMR on a 1.5 T scanner including both bright- and dark-blood LGE using a standard PSIR sequence. Both methods used identical sequence settings as per clinical protocol, apart from the inversion time parameter, which was set differently. All short-axis LGE images with scar were manually segmented for epicardial and endocardial borders. The extent of LGE was then measured visually by manual signal thresholding, and semi-automatically by signal thresholding using the standard deviation (SD) and the full width at half maximum (FWHM) methods. For all quantification methods in the IHD group, except the 6 SD method, dark-blood LGE detected significantly more enhancement compared to bright-blood LGE (p < 0.05 for all methods). For both bright-blood and dark-blood LGE, the 6 SD method correlated best with manual thresholding (16.9% vs. 17.1% and 20.1% vs. 20.4%, respectively). For the NICM group, no significant differences between LGE methods were found. For bright-blood LGE, the 5 SD method agreed best with manual thresholding (9.3% vs. 11.0%), while for dark-blood LGE the 4 SD method agreed best (12.6% vs. 11.5%). Similarly, for the HCM group no significant differences between LGE methods were found. For bright-blood LGE, the 6 SD method agreed best with manual thresholding (10.9% vs. 12.2%), while for dark-blood LGE the 5 SD method agreed best (13.2% vs. 11.5%). Semi-automated LGE quantification using dark-blood LGE images is feasible in both patients with ischemic and non-ischemic scar patterns. Given the advantage in detecting scar in patients with ischemic heart disease and no disadvantage in patients with non-ischemic scar, dark-blood LGE can be readily and widely adopted into clinical practice without compromising on quantification.

Identifiants

pubmed: 38443457
doi: 10.1038/s41598-024-52058-8
pii: 10.1038/s41598-024-52058-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5395

Subventions

Organisme : Department of Health
ID : National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Wu, E. et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357(9249), 21–28 (2001).
doi: 10.1016/S0140-6736(00)03567-4 pubmed: 11197356
Bohl, S. et al. Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease. Int. J. Cardiovasc. Imaging. 24(6), 597–607 (2008).
doi: 10.1007/s10554-008-9300-x pubmed: 18344061
Kim, R. J. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–1453 (2000).
doi: 10.1056/NEJM200011163432003 pubmed: 11078769
Simonetti, O. P. et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 218(1), 215–223 (2001).
doi: 10.1148/radiology.218.1.r01ja50215 pubmed: 11152805
Holtackers, R. J. et al. Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: A review of current techniques. J. Cardiovasc. Magn. Reson. 23(1), 96 (2021).
doi: 10.1186/s12968-021-00777-6 pubmed: 34289866 pmcid: 8296731
Kim, H. W. et al. Dark-blood delayed enhancement cardiac magnetic resonance of myocardial infarction. JACC Cardiovasc. Imaging. 11(12), 1758–1769 (2018).
doi: 10.1016/j.jcmg.2017.09.021 pubmed: 29248655
Kellman, P. et al. Dark blood late enhancement imaging. J. Cardiovasc. Magn. Reson. 18(1), 77 (2016).
doi: 10.1186/s12968-016-0297-3 pubmed: 27817748 pmcid: 5098284
Muscogiuri, G. et al. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J. Magn. Reson. Imaging. 45(5), 1429–1437 (2017).
doi: 10.1002/jmri.25498 pubmed: 27690324
Holtackers, R. J. et al. Dark-blood late gadolinium enhancement without additional magnetization preparation. J. Cardiovasc. Magn. Reson. 19(1), 64 (2017).
doi: 10.1186/s12968-017-0372-4 pubmed: 28835250 pmcid: 5568308
Foley, J. R. J. et al. Clinical evaluation of two dark blood methods of late gadolinium quantification of ischemic scar. J. Magn. Reson. Imaging. 50(1), 146–152 (2019).
doi: 10.1002/jmri.26613 pubmed: 30604492
Holtackers, R. J. et al. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. J. Cardiovasc. Magn. Reson. 21(1), 44 (2019).
doi: 10.1186/s12968-019-0556-1 pubmed: 31352900 pmcid: 6661833
Holtackers, R. J. et al. Histopathological validation of dark-blood late gadolinium enhancement MRI without additional magnetization preparation. J. Magn. Reson. Imaging. 55(1), 190–197 (2022).
doi: 10.1002/jmri.27805 pubmed: 34169603
Schulz-Menger, J. et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J. Cardiovasc. Magn. Reson. 22(1), 19 (2020).
doi: 10.1186/s12968-020-00610-6 pubmed: 32160925 pmcid: 7066763
Chan, R. H. et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 130(6), 484–495 (2014).
doi: 10.1161/CIRCULATIONAHA.113.007094 pubmed: 25092278
Kramer, C. M. et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 22(1), 17 (2020).
doi: 10.1186/s12968-020-00607-1 pubmed: 32089132 pmcid: 7038611
Nies, H. M. J. M. et al. Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging. 24(3), 364–372 (2023).
doi: 10.1093/ehjci/jeac107 pubmed: 35723673
Flett, A. S. et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc. Imaging. 4(2), 150–156 (2011).
doi: 10.1016/j.jcmg.2010.11.015 pubmed: 21329899
Kim, R. J. et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 100(19), 1992–2002 (1999).
doi: 10.1161/01.CIR.100.19.1992 pubmed: 10556226
Gerber, B. L. et al. Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation. 104(9), 998–1004 (2001).
doi: 10.1161/hc3401.095113 pubmed: 11524392
Oshinski, J. N. et al. Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation. 104(23), 2838–2842 (2001).
doi: 10.1161/hc4801.100351 pubmed: 11733404
Fieno, D. S. et al. Contrast-enhanced magnetic resonance imaging of myocardium at risk: Distinction between reversible and irreversible injury throughout infarct healing. J. Am. Coll. Cardiol. 36(6), 1985–1991 (2000).
doi: 10.1016/S0735-1097(00)00958-X pubmed: 11092675
Hillenbrand, H. B. et al. Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation. 102(14), 1678–1683 (2000).
doi: 10.1161/01.CIR.102.14.1678 pubmed: 11015347
Bondarenko, O. et al. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J. Cardiovasc. Magn. Reson. 7(2), 481–485 (2005).
doi: 10.1081/JCMR-200053623 pubmed: 15881532
Vermes, E. et al. Auto-threshold quantification of late gadolinium enhancement in patients with acute heart disease. J. Magn. Reson. Imaging. 37(2), 382–390 (2013).
doi: 10.1002/jmri.23814 pubmed: 23011840
Gruszczynska, K. et al. Different algorithms for quantitative analysis of myocardial infarction with DE MRI: Comparison with autopsy specimen measurements. Acad. Radiol. 18(12), 1529–1536 (2011).
doi: 10.1016/j.acra.2011.08.002 pubmed: 22055796
Freitas, P. et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J. Cardiovasc. Magn. Reson. 21(1), 50 (2019).
doi: 10.1186/s12968-019-0561-4 pubmed: 31412875 pmcid: 6694533
Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 309(9), 896–908 (2013).
doi: 10.1001/jama.2013.1363 pubmed: 23462786
Mikami, Y. et al. Objective criteria for septal fibrosis in non-ischemic dilated cardiomyopathy: Validation for the prediction of future cardiovascular events. J. Cardiovasc. Magn. Reson. 18(1), 82 (2016).
doi: 10.1186/s12968-016-0300-z pubmed: 27839514 pmcid: 5108079
Spiewak, M. et al. Comparison of different quantification methods of late gadolinium enhancement in patients with hypertrophic cardiomyopathy. Eur. J. Radiol. 74(3), e149-153 (2010).
doi: 10.1016/j.ejrad.2009.05.035 pubmed: 19523780
Harrigan, C. J. et al. Hypertrophic cardiomyopathy: Quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging. Radiology 258(1), 128–133 (2011).
doi: 10.1148/radiol.10090526 pubmed: 21045187
Kotecha, T. et al. Quantification of myocardial infarct size and microvascular obstruction using dark-blood late gadolinium enhancement. Eur. Heart J. Cardiovasc. Imaging. 20(Supplement_2), 48 (2019).
doi: 10.1093/ehjci/jez112.003
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Man. Cyberb. 9(1), 62–66 (1979).
doi: 10.1109/TSMC.1979.4310076
Brendel, J. M. et al. Dark-blood late gadolinium enhancement MRI is noninferior to bright-blood LGE in non-ischemic cardiomyopathies. Diagnostics (Basel). 13(9), 1634 (2023).
doi: 10.3390/diagnostics13091634 pubmed: 37175026 pmcid: 10178168
Holtackers, R. J. et al. Steadily increasing inversion time improves blood suppression for free-breathing 3D late gadolinium enhancement MRI with optimized dark-blood contrast. Invest Radiol. 56(5), 335–340 (2021).
doi: 10.1097/RLI.0000000000000747 pubmed: 33273374

Auteurs

Lamis Jada (L)

School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.
King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.

Robert J Holtackers (RJ)

School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom. rob.holtackers@mumc.nl.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands. rob.holtackers@mumc.nl.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands. rob.holtackers@mumc.nl.

Bibi Martens (B)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.

Hedwig M J M Nies (HMJM)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.

Caroline M Van De Heyning (CM)

GENCOR, University of Antwerp, Antwerp, Belgium.
Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium.

Rene M Botnar (RM)

School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.
Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile.

Joachim E Wildberger (JE)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.

Tevfik F Ismail (TF)

School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.

Reza Razavi (R)

School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.

Amedeo Chiribiri (A)

School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.

Classifications MeSH