Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 Mar 2024
05 Mar 2024
Historique:
received:
19
05
2023
accepted:
12
01
2024
medline:
6
3
2024
pubmed:
6
3
2024
entrez:
5
3
2024
Statut:
epublish
Résumé
Dark-blood late gadolinium enhancement (LGE) has been shown to improve the visualization and quantification of areas of ischemic scar compared to standard bright-blood LGE. Recently, the performance of various semi-automated quantification methods has been evaluated for the assessment of infarct size using both dark-blood LGE and conventional bright-blood LGE with histopathology as a reference standard. However, the impact of this sequence on different quantification strategies in vivo remains uncertain. In this study, various semi-automated scar quantification methods were evaluated for a range of different ischemic and non-ischemic pathologies encountered in clinical practice. A total of 62 patients referred for clinical cardiovascular magnetic resonance (CMR) were retrospectively included. All patients had a confirmed diagnosis of either ischemic heart disease (IHD; n = 21), dilated/non-ischemic cardiomyopathy (NICM; n = 21), or hypertrophic cardiomyopathy (HCM; n = 20) and underwent CMR on a 1.5 T scanner including both bright- and dark-blood LGE using a standard PSIR sequence. Both methods used identical sequence settings as per clinical protocol, apart from the inversion time parameter, which was set differently. All short-axis LGE images with scar were manually segmented for epicardial and endocardial borders. The extent of LGE was then measured visually by manual signal thresholding, and semi-automatically by signal thresholding using the standard deviation (SD) and the full width at half maximum (FWHM) methods. For all quantification methods in the IHD group, except the 6 SD method, dark-blood LGE detected significantly more enhancement compared to bright-blood LGE (p < 0.05 for all methods). For both bright-blood and dark-blood LGE, the 6 SD method correlated best with manual thresholding (16.9% vs. 17.1% and 20.1% vs. 20.4%, respectively). For the NICM group, no significant differences between LGE methods were found. For bright-blood LGE, the 5 SD method agreed best with manual thresholding (9.3% vs. 11.0%), while for dark-blood LGE the 4 SD method agreed best (12.6% vs. 11.5%). Similarly, for the HCM group no significant differences between LGE methods were found. For bright-blood LGE, the 6 SD method agreed best with manual thresholding (10.9% vs. 12.2%), while for dark-blood LGE the 5 SD method agreed best (13.2% vs. 11.5%). Semi-automated LGE quantification using dark-blood LGE images is feasible in both patients with ischemic and non-ischemic scar patterns. Given the advantage in detecting scar in patients with ischemic heart disease and no disadvantage in patients with non-ischemic scar, dark-blood LGE can be readily and widely adopted into clinical practice without compromising on quantification.
Identifiants
pubmed: 38443457
doi: 10.1038/s41598-024-52058-8
pii: 10.1038/s41598-024-52058-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5395Subventions
Organisme : Department of Health
ID : National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award
Pays : United Kingdom
Informations de copyright
© 2024. The Author(s).
Références
Wu, E. et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357(9249), 21–28 (2001).
doi: 10.1016/S0140-6736(00)03567-4
pubmed: 11197356
Bohl, S. et al. Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease. Int. J. Cardiovasc. Imaging. 24(6), 597–607 (2008).
doi: 10.1007/s10554-008-9300-x
pubmed: 18344061
Kim, R. J. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–1453 (2000).
doi: 10.1056/NEJM200011163432003
pubmed: 11078769
Simonetti, O. P. et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 218(1), 215–223 (2001).
doi: 10.1148/radiology.218.1.r01ja50215
pubmed: 11152805
Holtackers, R. J. et al. Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: A review of current techniques. J. Cardiovasc. Magn. Reson. 23(1), 96 (2021).
doi: 10.1186/s12968-021-00777-6
pubmed: 34289866
pmcid: 8296731
Kim, H. W. et al. Dark-blood delayed enhancement cardiac magnetic resonance of myocardial infarction. JACC Cardiovasc. Imaging. 11(12), 1758–1769 (2018).
doi: 10.1016/j.jcmg.2017.09.021
pubmed: 29248655
Kellman, P. et al. Dark blood late enhancement imaging. J. Cardiovasc. Magn. Reson. 18(1), 77 (2016).
doi: 10.1186/s12968-016-0297-3
pubmed: 27817748
pmcid: 5098284
Muscogiuri, G. et al. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J. Magn. Reson. Imaging. 45(5), 1429–1437 (2017).
doi: 10.1002/jmri.25498
pubmed: 27690324
Holtackers, R. J. et al. Dark-blood late gadolinium enhancement without additional magnetization preparation. J. Cardiovasc. Magn. Reson. 19(1), 64 (2017).
doi: 10.1186/s12968-017-0372-4
pubmed: 28835250
pmcid: 5568308
Foley, J. R. J. et al. Clinical evaluation of two dark blood methods of late gadolinium quantification of ischemic scar. J. Magn. Reson. Imaging. 50(1), 146–152 (2019).
doi: 10.1002/jmri.26613
pubmed: 30604492
Holtackers, R. J. et al. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. J. Cardiovasc. Magn. Reson. 21(1), 44 (2019).
doi: 10.1186/s12968-019-0556-1
pubmed: 31352900
pmcid: 6661833
Holtackers, R. J. et al. Histopathological validation of dark-blood late gadolinium enhancement MRI without additional magnetization preparation. J. Magn. Reson. Imaging. 55(1), 190–197 (2022).
doi: 10.1002/jmri.27805
pubmed: 34169603
Schulz-Menger, J. et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J. Cardiovasc. Magn. Reson. 22(1), 19 (2020).
doi: 10.1186/s12968-020-00610-6
pubmed: 32160925
pmcid: 7066763
Chan, R. H. et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 130(6), 484–495 (2014).
doi: 10.1161/CIRCULATIONAHA.113.007094
pubmed: 25092278
Kramer, C. M. et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 22(1), 17 (2020).
doi: 10.1186/s12968-020-00607-1
pubmed: 32089132
pmcid: 7038611
Nies, H. M. J. M. et al. Histopathological validation of semi-automated myocardial scar quantification techniques for dark-blood late gadolinium enhancement magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging. 24(3), 364–372 (2023).
doi: 10.1093/ehjci/jeac107
pubmed: 35723673
Flett, A. S. et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc. Imaging. 4(2), 150–156 (2011).
doi: 10.1016/j.jcmg.2010.11.015
pubmed: 21329899
Kim, R. J. et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 100(19), 1992–2002 (1999).
doi: 10.1161/01.CIR.100.19.1992
pubmed: 10556226
Gerber, B. L. et al. Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation. 104(9), 998–1004 (2001).
doi: 10.1161/hc3401.095113
pubmed: 11524392
Oshinski, J. N. et al. Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation. 104(23), 2838–2842 (2001).
doi: 10.1161/hc4801.100351
pubmed: 11733404
Fieno, D. S. et al. Contrast-enhanced magnetic resonance imaging of myocardium at risk: Distinction between reversible and irreversible injury throughout infarct healing. J. Am. Coll. Cardiol. 36(6), 1985–1991 (2000).
doi: 10.1016/S0735-1097(00)00958-X
pubmed: 11092675
Hillenbrand, H. B. et al. Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation. 102(14), 1678–1683 (2000).
doi: 10.1161/01.CIR.102.14.1678
pubmed: 11015347
Bondarenko, O. et al. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J. Cardiovasc. Magn. Reson. 7(2), 481–485 (2005).
doi: 10.1081/JCMR-200053623
pubmed: 15881532
Vermes, E. et al. Auto-threshold quantification of late gadolinium enhancement in patients with acute heart disease. J. Magn. Reson. Imaging. 37(2), 382–390 (2013).
doi: 10.1002/jmri.23814
pubmed: 23011840
Gruszczynska, K. et al. Different algorithms for quantitative analysis of myocardial infarction with DE MRI: Comparison with autopsy specimen measurements. Acad. Radiol. 18(12), 1529–1536 (2011).
doi: 10.1016/j.acra.2011.08.002
pubmed: 22055796
Freitas, P. et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J. Cardiovasc. Magn. Reson. 21(1), 50 (2019).
doi: 10.1186/s12968-019-0561-4
pubmed: 31412875
pmcid: 6694533
Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 309(9), 896–908 (2013).
doi: 10.1001/jama.2013.1363
pubmed: 23462786
Mikami, Y. et al. Objective criteria for septal fibrosis in non-ischemic dilated cardiomyopathy: Validation for the prediction of future cardiovascular events. J. Cardiovasc. Magn. Reson. 18(1), 82 (2016).
doi: 10.1186/s12968-016-0300-z
pubmed: 27839514
pmcid: 5108079
Spiewak, M. et al. Comparison of different quantification methods of late gadolinium enhancement in patients with hypertrophic cardiomyopathy. Eur. J. Radiol. 74(3), e149-153 (2010).
doi: 10.1016/j.ejrad.2009.05.035
pubmed: 19523780
Harrigan, C. J. et al. Hypertrophic cardiomyopathy: Quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging. Radiology 258(1), 128–133 (2011).
doi: 10.1148/radiol.10090526
pubmed: 21045187
Kotecha, T. et al. Quantification of myocardial infarct size and microvascular obstruction using dark-blood late gadolinium enhancement. Eur. Heart J. Cardiovasc. Imaging. 20(Supplement_2), 48 (2019).
doi: 10.1093/ehjci/jez112.003
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Man. Cyberb. 9(1), 62–66 (1979).
doi: 10.1109/TSMC.1979.4310076
Brendel, J. M. et al. Dark-blood late gadolinium enhancement MRI is noninferior to bright-blood LGE in non-ischemic cardiomyopathies. Diagnostics (Basel). 13(9), 1634 (2023).
doi: 10.3390/diagnostics13091634
pubmed: 37175026
pmcid: 10178168
Holtackers, R. J. et al. Steadily increasing inversion time improves blood suppression for free-breathing 3D late gadolinium enhancement MRI with optimized dark-blood contrast. Invest Radiol. 56(5), 335–340 (2021).
doi: 10.1097/RLI.0000000000000747
pubmed: 33273374