Distinct pathways drive anterior hypoblast specification in the implanting human embryo.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
Mar 2024
Historique:
received: 12 12 2022
accepted: 24 01 2024
medline: 18 3 2024
pubmed: 6 3 2024
entrez: 5 3 2024
Statut: ppublish

Résumé

Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.

Identifiants

pubmed: 38443567
doi: 10.1038/s41556-024-01367-1
pii: 10.1038/s41556-024-01367-1
pmc: PMC10940163
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

353-365

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Koot, Y. E. M., Teklenburg, G., Salker, M. S., Brosens, J. J. & Macklon, N. S. Molecular Aspects of Implantation Failure. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 1943–1950 (2012).
doi: 10.1016/j.bbadis.2012.05.017
Macklon, N. S. Conception to ongoing pregnancy: the 'black box' of early pregnancy loss. Hum. Reprod. Update 8, 333–343 (2002).
pubmed: 12206468 doi: 10.1093/humupd/8.4.333
Molè, M. A., Weberling, A. & Zernicka-Goetz, M. in Current Topics in Developmental Biology Vol. 136 113–138 (Academic Press, 2020).
Rossant, J. & Tam, P. P. L. Early human embryonic development: blastocyst formation to gastrulation. Dev. Cell 57, 152–165 (2022).
pubmed: 35077679 doi: 10.1016/j.devcel.2021.12.022
Weberling, A. & Zernicka-Goetz, M. Trophectoderm mechanics direct epiblast shape upon embryo implantation. Cell Rep. 34, 108655 (2021).
pubmed: 33472064 pmcid: 7816124 doi: 10.1016/j.celrep.2020.108655
Luckett, W. P. The development of primordial and definitive amniotic cavities in early rhesus monkey and human embryos. Am. J. Anat. 144, 149–167 (1975).
pubmed: 810017 doi: 10.1002/aja.1001440204
Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).
pubmed: 29186120 pmcid: 5768241 doi: 10.1038/nature24675
Wallingford, M. C., Angelo, J. R. & Mager, J. Morphogenetic analysis of peri-implantation development. Dev. Dyn. 242, 1110–1120 (2013).
pubmed: 23728800 doi: 10.1002/dvdy.23991
Belo, J. A. et al. Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997).
pubmed: 9431803 doi: 10.1016/S0925-4773(97)00125-1
Molè, M. A. et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat. Commun. 12, 3679 (2021).
pubmed: 34140473 pmcid: 8211662 doi: 10.1038/s41467-021-23758-w
Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002).
pubmed: 12431380 doi: 10.1016/S1534-5807(02)00321-0
Perea-Gomez, A. et al. Regionalisation of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev. Biol. 7, 96 (2007).
pubmed: 17705827 pmcid: 1978209 doi: 10.1186/1471-213X-7-96
Stower, M. J. & Srinivas, S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. Trans. R Soc. Lond. B Biol. Sci. 369, 20130546 (2014).
pubmed: 25349454 pmcid: 4216468 doi: 10.1098/rstb.2013.0546
Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).
pubmed: 15004567 doi: 10.1038/nature02418
Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).
pubmed: 11418863 doi: 10.1038/35082103
Mesnard, D., Guzman-Ayala, M. & Constam, D. B. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133, 2497–2505 (2006).
pubmed: 16728477 doi: 10.1242/dev.02413
Kumar, A. et al. Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration. Dev. Biol. 400, 1–9 (2015).
pubmed: 25536399 doi: 10.1016/j.ydbio.2014.12.016
Rodriguez, T. A., Srinivas, S., Clements, M. P., Smith, J. C. & Beddington, R. S. P. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132, 2513–2520 (2005).
pubmed: 15857911 doi: 10.1242/dev.01847
Richardson, L., Torres-Padilla, M. E. & Zernicka-Goetz, M. Regionalised signalling within the extraembryonic ectoderm regulates anterior visceral endoderm positioning in the mouse embryo. Mech. Dev. 123, 288–296 (2006).
pubmed: 16517131 doi: 10.1016/j.mod.2006.01.004
Bergmann, S. et al. Spatial profiling of early primate gastrulation in utero. Nature 609, 136–143 (2022).
pubmed: 35709828 pmcid: 7614364 doi: 10.1038/s41586-022-04953-1
Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).
pubmed: 27556940 doi: 10.1038/nature19096
Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).
pubmed: 25356584 doi: 10.1038/nprot.2014.186
Morris, S. A. et al. Dynamics of anterior–posterior axis formation in the developing mouse embryo. Nat. Commun. 3, 673–673 (2012).
pubmed: 22334076 doi: 10.1038/ncomms1671
Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).
pubmed: 27144686 pmcid: 5049689 doi: 10.1038/ncb3347
Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).
pubmed: 27144363 doi: 10.1038/nature17948
Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).
pubmed: 31830756 doi: 10.1038/s41586-019-1875-y
Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).
pubmed: 31435013 doi: 10.1038/s41586-019-1500-0
Ma, H. et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890 (2019).
pubmed: 31672918 doi: 10.1126/science.aax7890
Niu, Y. et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366, eaaw5754 (2019).
pubmed: 31672917 doi: 10.1126/science.aaw5754
Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e56 (2018).
pubmed: 29249463 doi: 10.1016/j.stem.2017.11.004
Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).
pubmed: 31596842 pmcid: 6802852 doi: 10.1371/journal.pbio.3000187
West, R. C. et al. Dynamics of trophoblast differentiation in peri-implantation–stage human embryos. Proc. Natl Acad. Sci. USA 116, 22635–22644 (2019).
pubmed: 31636193 pmcid: 6842583 doi: 10.1073/pnas.1911362116
Ruane, P. T. et al. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation. Hum. Reprod. 37, 777–792 (2022).
pubmed: 35079788 pmcid: 9398450 doi: 10.1093/humrep/deac008
Pham, T. X. A. et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell 29, 1346–1365.e1310 (2022).
pubmed: 36055191 pmcid: 9438972 doi: 10.1016/j.stem.2022.08.001
Yang, R. et al. Amnion signals are essential for mesoderm formation in primates. Nat. Commun. 12, 5126 (2021).
pubmed: 34446705 pmcid: 8390679 doi: 10.1038/s41467-021-25186-2
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613–3613 (2015).
pubmed: 26487783 pmcid: 4631772 doi: 10.1242/dev.131235
Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145, dev158501 (2018).
pubmed: 29361568 pmcid: 5818005 doi: 10.1242/dev.158501
Biechele, S., Cox, B. J. & Rossant, J. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355, 275–285 (2011).
pubmed: 21554866 doi: 10.1016/j.ydbio.2011.04.029
Kelly, O. G., Pinson, K. I. & Skarnes, W. C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131, 2803–2815 (2004).
pubmed: 15142971 doi: 10.1242/dev.01137
Takai, H. et al. Placental Sonic hedgehog pathway regulates fetal growth via the IGF axis in preeclampsia. J. Clin. Endocrinol. Metab. 104, 4239–4252 (2019).
pubmed: 31120491 doi: 10.1210/jc.2019-00335
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
pubmed: 32103204 doi: 10.1038/s41596-020-0292-x
Schmierer, B. & Hill, C. S. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol. Cell. Biol. 25, 9845–9858 (2005).
pubmed: 16260601 pmcid: 1280270 doi: 10.1128/MCB.25.22.9845-9858.2005
Yoney, A. et al. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife https://doi.org/10.7554/eLife.38279.001 (2018).
doi: 10.7554/eLife.38279.001 pubmed: 30311909 pmcid: 6234031
Meistermann, D. et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 28, 1625–1640.e1626 (2021).
pubmed: 34004179 doi: 10.1016/j.stem.2021.04.027
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).
pubmed: 27062923 pmcid: 4868821 doi: 10.1016/j.cell.2016.03.023
Chhabra, S. & Warmflash, A. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo. Biol. Open 10, bio.058617 (2021).
doi: 10.1242/bio.058617
Takaoka, K., Nishimura, H. & Hamada, H. Both Nodal signalling and stochasticity select for prospective distal visceral endoderm in mouse embryos. Nat. Commun. 8, 1492 (2017).
pubmed: 29138408 pmcid: 5686177 doi: 10.1038/s41467-017-01625-x
Mackinlay, K. M. L. et al. An in vitro stem cell model of human epiblast and yolk sac interaction. eLife 10, e63930 (2021).
pubmed: 34403333 pmcid: 8370770 doi: 10.7554/eLife.63930
Guo, G. et al. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28, 1040–1056.e1046 (2021).
pubmed: 33831366 pmcid: 8189439 doi: 10.1016/j.stem.2021.02.025
Osnato, A. et al. Tgfβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells. eLife 10, e67259 (2021).
pubmed: 34463252 pmcid: 8410071 doi: 10.7554/eLife.67259
Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).
pubmed: 34856602 doi: 10.1038/s41586-021-04267-8
Niakan, K. K. & Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64 (2013).
pubmed: 23261930 doi: 10.1016/j.ydbio.2012.12.008
Xiao, Z., Watson, N., Rodriguez, C. & Lodish, H. F. Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals. J. Biol. Chem. 276, 39404–39410 (2001).
pubmed: 11509558 doi: 10.1074/jbc.M103117200
Sozen, B., Demir, N. & Zernicka-Goetz, M. BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo. Dev. Biol. 470, 84–94 (2021).
pubmed: 33217407 doi: 10.1016/j.ydbio.2020.11.005
Hollnagel, A., Oehlmann, V., Heymer, J., Rüther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999).
pubmed: 10391928 doi: 10.1074/jbc.274.28.19838
Simunovic, M. et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).
pubmed: 31263269 doi: 10.1038/s41556-019-0349-7
Raya, A. et al. Notch activity induces Nodal expression and mediates the establishment of left–right asymmetry in vertebrate embryos. Genes Dev. 17, 1213–1218 (2003).
pubmed: 12730123 pmcid: 196060 doi: 10.1101/gad.1084403
Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).
pubmed: 19497275 doi: 10.1016/j.stem.2009.05.015
Weatherbee, B. A. T., Cui, T. & Zernicka-Goetz, M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev. Biol. 474, 91–99 (2021).
pubmed: 33333069 doi: 10.1016/j.ydbio.2020.12.010
Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).
pubmed: 26860365 doi: 10.1038/nrm.2015.28
Nowotschin, S., Xenopoulos, P., Schrode, N. & Hadjantonakis, A. K. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev. Biol. https://doi.org/10.1186/1471-213X-13-15 (2013).
Haapasalo, A. & Kovacs, D. M. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis. 25, 3–28 (2011).
pubmed: 21335653 pmcid: 3281584 doi: 10.3233/JAD-2011-101065
Amita, M. et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc. Natl Acad. Sci. USA 110, E1212–E12121 (2013).
pubmed: 23493551 pmcid: 3612666 doi: 10.1073/pnas.1303094110
Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 9, e52504 (2020).
pubmed: 32048992 pmcid: 7062471 doi: 10.7554/eLife.52504
Jang, Y. J., Kim, M., Lee, B.-K., Kim, J. & Roberts, R. Induction of human trophoblast stem-like cells from primed pluripotent stem cells. Proc. Natl Acad. Sci. USA 119, e2115709119 (2022).
pubmed: 35537047 pmcid: 9171790 doi: 10.1073/pnas.2115709119
Xu, R. H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).
pubmed: 12426580 doi: 10.1038/nbt761
Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).
pubmed: 27720607 doi: 10.1016/j.devcel.2016.09.007
Cheng, S. et al. Single-cell RNA-seq reveals cellular heterogeneity of pluripotency transition and X chromosome dynamics during early mouse development. Cell Rep. 26, 2593–2607.e2593 (2019).
pubmed: 30840884 doi: 10.1016/j.celrep.2019.02.031
Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).
pubmed: 24408435 doi: 10.1126/science.1245316
Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).
pubmed: 28768204 pmcid: 5554778 doi: 10.1016/j.celrep.2017.07.009
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
pubmed: 30787436 pmcid: 6522369 doi: 10.1038/s41586-019-0933-9
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
pubmed: 27043002 doi: 10.1038/nbt.3519
Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).
pubmed: 33795888 doi: 10.1038/s41587-021-00870-2
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Townes, F. W. & Irizarry, R. A. Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers. Genome Biol. 21, 160 (2020).
pubmed: 32620142 pmcid: 7333325 doi: 10.1186/s13059-020-02078-0
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667 (2018).
pubmed: 29136241 doi: 10.1093/nar/gkx1064
Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).
pubmed: 19617889 pmcid: 3159387 doi: 10.1038/nprot.2009.97
PeriImplantation. GitHub (2024); https://github.com/bweatherbee/PeriImplantation
Sozen, B. et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 5550 (2021).
pubmed: 34548496 pmcid: 8455697 doi: 10.1038/s41467-021-25853-4
Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).
pubmed: 26555056 pmcid: 4643313 doi: 10.1016/j.devcel.2015.10.011
Blum, M. et al. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69, 1097–1106 (1992).
pubmed: 1352187 doi: 10.1016/0092-8674(92)90632-M
van Eyll, J. M., Pierreux, C. E., Lemaigre, F. P. & Rousseau, G. G. Shh-dependent differentiation of intestinal tissue from embryonic pancreas by activin A. J. Cell Sci. 117, 2077–2086 (2004).
pubmed: 15054113 doi: 10.1242/jcs.01067
Izadyar, F., Zeinstra, E., Colenbrander, B., Vanderstichele, H. M. & Bevers, M. M. In vitro maturation of bovine oocytes in the presence of bovine activin A does not affect the number of embryos. Anim. Reprod. Sci. 45, 37–45 (1996).
pubmed: 9227910 doi: 10.1016/S0378-4320(96)01574-6
Park, S. S. et al. Improvement of ovarian response and oocyte quality of aged female by administration of bone morphogenetic protein-6 in a mouse model. Reprod. Biol. Endocrinol. 10, 117 (2012).
pubmed: 23273273 pmcid: 3551793 doi: 10.1186/1477-7827-10-117
Valera, E., Isaacs, M. J., Kawakami, Y., Izpisua Belmonte, J. C. & Choe, S. BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers as inductor of differentiation of human embryonic stem cells. PLoS ONE 5, e11167 (2010).
pubmed: 20567515 pmcid: 2887366 doi: 10.1371/journal.pone.0011167
Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002).
pubmed: 12101103 pmcid: 1084181 doi: 10.1093/embo-reports/kvf124
Liu, Y. et al. Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS ONE 9, e109588 (2014).
pubmed: 25313563 pmcid: 4196912 doi: 10.1371/journal.pone.0109588
Ferjentsik, Z. et al. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet. 5, e1000662 (2009).
pubmed: 19779553 pmcid: 2739441 doi: 10.1371/journal.pgen.1000662
Terauchi, K. J., Shigeta, Y., Iguchi, T. & Sato, T. Role of Notch signaling in granulosa cell proliferation and polyovular follicle induction during folliculogenesis in mouse ovary. Cell Tissue Res. 365, 197–208 (2016).
pubmed: 26899251 doi: 10.1007/s00441-016-2371-4
MacDonald, R. B. et al. Muller glia provide essential tensile strength to the developing retina. J. Cell Biol. 210, 1075–1083 (2015).
pubmed: 26416961 pmcid: 4586739 doi: 10.1083/jcb.201503115
Alhashem, Z. et al. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 11, e.73550 (2022).
doi: 10.7554/eLife.73550
Du, Z. W. et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626 (2015).
pubmed: 25806427 doi: 10.1038/ncomms7626
Halder, D. et al. Combining suppression of stemness with lineage-specific induction leads to conversion of pluripotent cells into functional neurons. Chem. Biol. 22, 1512–1520 (2015).
pubmed: 26590637 doi: 10.1016/j.chembiol.2015.10.008
Lu, Y. F. et al. Delta/Jagged-mediated Notch signaling induces the differentiation of agr2-positive epidermal mucous cells in zebrafish embryos. PLoS Genet. 17, e1009969 (2021).
pubmed: 34962934 pmcid: 8746730 doi: 10.1371/journal.pgen.1009969
Yang, Y. et al. Vitamin C alleviates the senescence of periodontal ligament stem cells through inhibition of Notch3 during long-term culture. J. Cell. Physiol. 236, 1237–1251 (2021).
pubmed: 32662081 doi: 10.1002/jcp.29930
Bredenkamp, N. et al. Wnt inhibition facilitates RNA-mediated reprogramming of human somatic cells to naive pluripotency. Stem Cell Rep. 13, 1083–1098 (2019).
doi: 10.1016/j.stemcr.2019.10.009
Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01 (2017).
Weatherbee, B. A. T. Seurat objects from 'Distinct pathways drive anterior hypoblast specification in the implanting human embryo'. Zenodo https://doi.org/10.5281/zenodo.7689580 (2024).

Auteurs

Bailey A T Weatherbee (BAT)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Antonia Weberling (A)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
All Souls College, Oxford, UK.
Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK.

Carlos W Gantner (CW)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.

Lisa K Iwamoto-Stohl (LK)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.

Zoe Barnikel (Z)

CARE Fertility, Nottingham, UK.

Amy Barrie (A)

CARE Fertility, Nottingham, UK.

Alison Campbell (A)

CARE Fertility, Nottingham, UK.

Paula Cunningham (P)

CARE Fertility, Nottingham, UK.

Cath Drezet (C)

CARE Fertility, Nottingham, UK.

Panagiota Efstathiou (P)

CARE Fertility, Nottingham, UK.

Simon Fishel (S)

CARE Fertility, Nottingham, UK.

Sandra Gutiérrez Vindel (SG)

CARE Fertility, Nottingham, UK.

Megan Lockwood (M)

CARE Fertility, Nottingham, UK.

Rebecca Oakley (R)

CARE Fertility, Nottingham, UK.

Catherine Pretty (C)

CARE Fertility, Nottingham, UK.

Nabiha Chowdhury (N)

Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK.

Lucy Richardson (L)

Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK.

Anastasia Mania (A)

King's Fertility, Denmark Hill, London, UK.

Lauren Weavers (L)

King's Fertility, Denmark Hill, London, UK.

Leila Christie (L)

Bourn Hall Fertility Clinic, Bourn, UK.

Kay Elder (K)

Bourn Hall Fertility Clinic, Bourn, UK.

Phillip Snell (P)

Bourn Hall Fertility Clinic, Bourn, UK.

Magdalena Zernicka-Goetz (M)

Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK. mz205@cam.ac.uk.
Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. mz205@cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH