Distinct pathways drive anterior hypoblast specification in the implanting human embryo.
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
received:
12
12
2022
accepted:
24
01
2024
medline:
18
3
2024
pubmed:
6
3
2024
entrez:
5
3
2024
Statut:
ppublish
Résumé
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Identifiants
pubmed: 38443567
doi: 10.1038/s41556-024-01367-1
pii: 10.1038/s41556-024-01367-1
pmc: PMC10940163
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
353-365Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Informations de copyright
© 2024. The Author(s).
Références
Koot, Y. E. M., Teklenburg, G., Salker, M. S., Brosens, J. J. & Macklon, N. S. Molecular Aspects of Implantation Failure. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 1943–1950 (2012).
doi: 10.1016/j.bbadis.2012.05.017
Macklon, N. S. Conception to ongoing pregnancy: the 'black box' of early pregnancy loss. Hum. Reprod. Update 8, 333–343 (2002).
pubmed: 12206468
doi: 10.1093/humupd/8.4.333
Molè, M. A., Weberling, A. & Zernicka-Goetz, M. in Current Topics in Developmental Biology Vol. 136 113–138 (Academic Press, 2020).
Rossant, J. & Tam, P. P. L. Early human embryonic development: blastocyst formation to gastrulation. Dev. Cell 57, 152–165 (2022).
pubmed: 35077679
doi: 10.1016/j.devcel.2021.12.022
Weberling, A. & Zernicka-Goetz, M. Trophectoderm mechanics direct epiblast shape upon embryo implantation. Cell Rep. 34, 108655 (2021).
pubmed: 33472064
pmcid: 7816124
doi: 10.1016/j.celrep.2020.108655
Luckett, W. P. The development of primordial and definitive amniotic cavities in early rhesus monkey and human embryos. Am. J. Anat. 144, 149–167 (1975).
pubmed: 810017
doi: 10.1002/aja.1001440204
Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).
pubmed: 29186120
pmcid: 5768241
doi: 10.1038/nature24675
Wallingford, M. C., Angelo, J. R. & Mager, J. Morphogenetic analysis of peri-implantation development. Dev. Dyn. 242, 1110–1120 (2013).
pubmed: 23728800
doi: 10.1002/dvdy.23991
Belo, J. A. et al. Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997).
pubmed: 9431803
doi: 10.1016/S0925-4773(97)00125-1
Molè, M. A. et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat. Commun. 12, 3679 (2021).
pubmed: 34140473
pmcid: 8211662
doi: 10.1038/s41467-021-23758-w
Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002).
pubmed: 12431380
doi: 10.1016/S1534-5807(02)00321-0
Perea-Gomez, A. et al. Regionalisation of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev. Biol. 7, 96 (2007).
pubmed: 17705827
pmcid: 1978209
doi: 10.1186/1471-213X-7-96
Stower, M. J. & Srinivas, S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. Trans. R Soc. Lond. B Biol. Sci. 369, 20130546 (2014).
pubmed: 25349454
pmcid: 4216468
doi: 10.1098/rstb.2013.0546
Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).
pubmed: 15004567
doi: 10.1038/nature02418
Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).
pubmed: 11418863
doi: 10.1038/35082103
Mesnard, D., Guzman-Ayala, M. & Constam, D. B. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133, 2497–2505 (2006).
pubmed: 16728477
doi: 10.1242/dev.02413
Kumar, A. et al. Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration. Dev. Biol. 400, 1–9 (2015).
pubmed: 25536399
doi: 10.1016/j.ydbio.2014.12.016
Rodriguez, T. A., Srinivas, S., Clements, M. P., Smith, J. C. & Beddington, R. S. P. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132, 2513–2520 (2005).
pubmed: 15857911
doi: 10.1242/dev.01847
Richardson, L., Torres-Padilla, M. E. & Zernicka-Goetz, M. Regionalised signalling within the extraembryonic ectoderm regulates anterior visceral endoderm positioning in the mouse embryo. Mech. Dev. 123, 288–296 (2006).
pubmed: 16517131
doi: 10.1016/j.mod.2006.01.004
Bergmann, S. et al. Spatial profiling of early primate gastrulation in utero. Nature 609, 136–143 (2022).
pubmed: 35709828
pmcid: 7614364
doi: 10.1038/s41586-022-04953-1
Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).
pubmed: 27556940
doi: 10.1038/nature19096
Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).
pubmed: 25356584
doi: 10.1038/nprot.2014.186
Morris, S. A. et al. Dynamics of anterior–posterior axis formation in the developing mouse embryo. Nat. Commun. 3, 673–673 (2012).
pubmed: 22334076
doi: 10.1038/ncomms1671
Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).
pubmed: 27144686
pmcid: 5049689
doi: 10.1038/ncb3347
Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).
pubmed: 27144363
doi: 10.1038/nature17948
Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).
pubmed: 31830756
doi: 10.1038/s41586-019-1875-y
Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).
pubmed: 31435013
doi: 10.1038/s41586-019-1500-0
Ma, H. et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890 (2019).
pubmed: 31672918
doi: 10.1126/science.aax7890
Niu, Y. et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366, eaaw5754 (2019).
pubmed: 31672917
doi: 10.1126/science.aaw5754
Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e56 (2018).
pubmed: 29249463
doi: 10.1016/j.stem.2017.11.004
Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).
pubmed: 31596842
pmcid: 6802852
doi: 10.1371/journal.pbio.3000187
West, R. C. et al. Dynamics of trophoblast differentiation in peri-implantation–stage human embryos. Proc. Natl Acad. Sci. USA 116, 22635–22644 (2019).
pubmed: 31636193
pmcid: 6842583
doi: 10.1073/pnas.1911362116
Ruane, P. T. et al. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation. Hum. Reprod. 37, 777–792 (2022).
pubmed: 35079788
pmcid: 9398450
doi: 10.1093/humrep/deac008
Pham, T. X. A. et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell 29, 1346–1365.e1310 (2022).
pubmed: 36055191
pmcid: 9438972
doi: 10.1016/j.stem.2022.08.001
Yang, R. et al. Amnion signals are essential for mesoderm formation in primates. Nat. Commun. 12, 5126 (2021).
pubmed: 34446705
pmcid: 8390679
doi: 10.1038/s41467-021-25186-2
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3613–3613 (2015).
pubmed: 26487783
pmcid: 4631772
doi: 10.1242/dev.131235
Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145, dev158501 (2018).
pubmed: 29361568
pmcid: 5818005
doi: 10.1242/dev.158501
Biechele, S., Cox, B. J. & Rossant, J. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355, 275–285 (2011).
pubmed: 21554866
doi: 10.1016/j.ydbio.2011.04.029
Kelly, O. G., Pinson, K. I. & Skarnes, W. C. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131, 2803–2815 (2004).
pubmed: 15142971
doi: 10.1242/dev.01137
Takai, H. et al. Placental Sonic hedgehog pathway regulates fetal growth via the IGF axis in preeclampsia. J. Clin. Endocrinol. Metab. 104, 4239–4252 (2019).
pubmed: 31120491
doi: 10.1210/jc.2019-00335
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
pubmed: 32103204
doi: 10.1038/s41596-020-0292-x
Schmierer, B. & Hill, C. S. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol. Cell. Biol. 25, 9845–9858 (2005).
pubmed: 16260601
pmcid: 1280270
doi: 10.1128/MCB.25.22.9845-9858.2005
Yoney, A. et al. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife https://doi.org/10.7554/eLife.38279.001 (2018).
doi: 10.7554/eLife.38279.001
pubmed: 30311909
pmcid: 6234031
Meistermann, D. et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 28, 1625–1640.e1626 (2021).
pubmed: 34004179
doi: 10.1016/j.stem.2021.04.027
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).
pubmed: 27062923
pmcid: 4868821
doi: 10.1016/j.cell.2016.03.023
Chhabra, S. & Warmflash, A. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo. Biol. Open 10, bio.058617 (2021).
doi: 10.1242/bio.058617
Takaoka, K., Nishimura, H. & Hamada, H. Both Nodal signalling and stochasticity select for prospective distal visceral endoderm in mouse embryos. Nat. Commun. 8, 1492 (2017).
pubmed: 29138408
pmcid: 5686177
doi: 10.1038/s41467-017-01625-x
Mackinlay, K. M. L. et al. An in vitro stem cell model of human epiblast and yolk sac interaction. eLife 10, e63930 (2021).
pubmed: 34403333
pmcid: 8370770
doi: 10.7554/eLife.63930
Guo, G. et al. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28, 1040–1056.e1046 (2021).
pubmed: 33831366
pmcid: 8189439
doi: 10.1016/j.stem.2021.02.025
Osnato, A. et al. Tgfβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells. eLife 10, e67259 (2021).
pubmed: 34463252
pmcid: 8410071
doi: 10.7554/eLife.67259
Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).
pubmed: 34856602
doi: 10.1038/s41586-021-04267-8
Niakan, K. K. & Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64 (2013).
pubmed: 23261930
doi: 10.1016/j.ydbio.2012.12.008
Xiao, Z., Watson, N., Rodriguez, C. & Lodish, H. F. Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals. J. Biol. Chem. 276, 39404–39410 (2001).
pubmed: 11509558
doi: 10.1074/jbc.M103117200
Sozen, B., Demir, N. & Zernicka-Goetz, M. BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo. Dev. Biol. 470, 84–94 (2021).
pubmed: 33217407
doi: 10.1016/j.ydbio.2020.11.005
Hollnagel, A., Oehlmann, V., Heymer, J., Rüther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999).
pubmed: 10391928
doi: 10.1074/jbc.274.28.19838
Simunovic, M. et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).
pubmed: 31263269
doi: 10.1038/s41556-019-0349-7
Raya, A. et al. Notch activity induces Nodal expression and mediates the establishment of left–right asymmetry in vertebrate embryos. Genes Dev. 17, 1213–1218 (2003).
pubmed: 12730123
pmcid: 196060
doi: 10.1101/gad.1084403
Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).
pubmed: 19497275
doi: 10.1016/j.stem.2009.05.015
Weatherbee, B. A. T., Cui, T. & Zernicka-Goetz, M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev. Biol. 474, 91–99 (2021).
pubmed: 33333069
doi: 10.1016/j.ydbio.2020.12.010
Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).
pubmed: 26860365
doi: 10.1038/nrm.2015.28
Nowotschin, S., Xenopoulos, P., Schrode, N. & Hadjantonakis, A. K. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev. Biol. https://doi.org/10.1186/1471-213X-13-15 (2013).
Haapasalo, A. & Kovacs, D. M. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis. 25, 3–28 (2011).
pubmed: 21335653
pmcid: 3281584
doi: 10.3233/JAD-2011-101065
Amita, M. et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc. Natl Acad. Sci. USA 110, E1212–E12121 (2013).
pubmed: 23493551
pmcid: 3612666
doi: 10.1073/pnas.1303094110
Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 9, e52504 (2020).
pubmed: 32048992
pmcid: 7062471
doi: 10.7554/eLife.52504
Jang, Y. J., Kim, M., Lee, B.-K., Kim, J. & Roberts, R. Induction of human trophoblast stem-like cells from primed pluripotent stem cells. Proc. Natl Acad. Sci. USA 119, e2115709119 (2022).
pubmed: 35537047
pmcid: 9171790
doi: 10.1073/pnas.2115709119
Xu, R. H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).
pubmed: 12426580
doi: 10.1038/nbt761
Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).
pubmed: 27720607
doi: 10.1016/j.devcel.2016.09.007
Cheng, S. et al. Single-cell RNA-seq reveals cellular heterogeneity of pluripotency transition and X chromosome dynamics during early mouse development. Cell Rep. 26, 2593–2607.e2593 (2019).
pubmed: 30840884
doi: 10.1016/j.celrep.2019.02.031
Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).
pubmed: 24408435
doi: 10.1126/science.1245316
Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).
pubmed: 28768204
pmcid: 5554778
doi: 10.1016/j.celrep.2017.07.009
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
pubmed: 30787436
pmcid: 6522369
doi: 10.1038/s41586-019-0933-9
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
pubmed: 27043002
doi: 10.1038/nbt.3519
Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).
pubmed: 33795888
doi: 10.1038/s41587-021-00870-2
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Townes, F. W. & Irizarry, R. A. Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers. Genome Biol. 21, 160 (2020).
pubmed: 32620142
pmcid: 7333325
doi: 10.1186/s13059-020-02078-0
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667 (2018).
pubmed: 29136241
doi: 10.1093/nar/gkx1064
Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).
pubmed: 19617889
pmcid: 3159387
doi: 10.1038/nprot.2009.97
PeriImplantation. GitHub (2024); https://github.com/bweatherbee/PeriImplantation
Sozen, B. et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 5550 (2021).
pubmed: 34548496
pmcid: 8455697
doi: 10.1038/s41467-021-25853-4
Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).
pubmed: 26555056
pmcid: 4643313
doi: 10.1016/j.devcel.2015.10.011
Blum, M. et al. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69, 1097–1106 (1992).
pubmed: 1352187
doi: 10.1016/0092-8674(92)90632-M
van Eyll, J. M., Pierreux, C. E., Lemaigre, F. P. & Rousseau, G. G. Shh-dependent differentiation of intestinal tissue from embryonic pancreas by activin A. J. Cell Sci. 117, 2077–2086 (2004).
pubmed: 15054113
doi: 10.1242/jcs.01067
Izadyar, F., Zeinstra, E., Colenbrander, B., Vanderstichele, H. M. & Bevers, M. M. In vitro maturation of bovine oocytes in the presence of bovine activin A does not affect the number of embryos. Anim. Reprod. Sci. 45, 37–45 (1996).
pubmed: 9227910
doi: 10.1016/S0378-4320(96)01574-6
Park, S. S. et al. Improvement of ovarian response and oocyte quality of aged female by administration of bone morphogenetic protein-6 in a mouse model. Reprod. Biol. Endocrinol. 10, 117 (2012).
pubmed: 23273273
pmcid: 3551793
doi: 10.1186/1477-7827-10-117
Valera, E., Isaacs, M. J., Kawakami, Y., Izpisua Belmonte, J. C. & Choe, S. BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers as inductor of differentiation of human embryonic stem cells. PLoS ONE 5, e11167 (2010).
pubmed: 20567515
pmcid: 2887366
doi: 10.1371/journal.pone.0011167
Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. & Haass, C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002).
pubmed: 12101103
pmcid: 1084181
doi: 10.1093/embo-reports/kvf124
Liu, Y. et al. Timely inhibition of Notch signaling by DAPT promotes cardiac differentiation of murine pluripotent stem cells. PLoS ONE 9, e109588 (2014).
pubmed: 25313563
pmcid: 4196912
doi: 10.1371/journal.pone.0109588
Ferjentsik, Z. et al. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet. 5, e1000662 (2009).
pubmed: 19779553
pmcid: 2739441
doi: 10.1371/journal.pgen.1000662
Terauchi, K. J., Shigeta, Y., Iguchi, T. & Sato, T. Role of Notch signaling in granulosa cell proliferation and polyovular follicle induction during folliculogenesis in mouse ovary. Cell Tissue Res. 365, 197–208 (2016).
pubmed: 26899251
doi: 10.1007/s00441-016-2371-4
MacDonald, R. B. et al. Muller glia provide essential tensile strength to the developing retina. J. Cell Biol. 210, 1075–1083 (2015).
pubmed: 26416961
pmcid: 4586739
doi: 10.1083/jcb.201503115
Alhashem, Z. et al. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 11, e.73550 (2022).
doi: 10.7554/eLife.73550
Du, Z. W. et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626 (2015).
pubmed: 25806427
doi: 10.1038/ncomms7626
Halder, D. et al. Combining suppression of stemness with lineage-specific induction leads to conversion of pluripotent cells into functional neurons. Chem. Biol. 22, 1512–1520 (2015).
pubmed: 26590637
doi: 10.1016/j.chembiol.2015.10.008
Lu, Y. F. et al. Delta/Jagged-mediated Notch signaling induces the differentiation of agr2-positive epidermal mucous cells in zebrafish embryos. PLoS Genet. 17, e1009969 (2021).
pubmed: 34962934
pmcid: 8746730
doi: 10.1371/journal.pgen.1009969
Yang, Y. et al. Vitamin C alleviates the senescence of periodontal ligament stem cells through inhibition of Notch3 during long-term culture. J. Cell. Physiol. 236, 1237–1251 (2021).
pubmed: 32662081
doi: 10.1002/jcp.29930
Bredenkamp, N. et al. Wnt inhibition facilitates RNA-mediated reprogramming of human somatic cells to naive pluripotency. Stem Cell Rep. 13, 1083–1098 (2019).
doi: 10.1016/j.stemcr.2019.10.009
Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01 (2017).
Weatherbee, B. A. T. Seurat objects from 'Distinct pathways drive anterior hypoblast specification in the implanting human embryo'. Zenodo https://doi.org/10.5281/zenodo.7689580 (2024).