An Update on Stiripentol Mechanisms of Action: A Narrative Review.
Cytochrome P450s
Epilepsy
GABA
Ion channels
Lactate dehydrogenase
Metabolism
Stiripentol
Journal
Advances in therapy
ISSN: 1865-8652
Titre abrégé: Adv Ther
Pays: United States
ID NLM: 8611864
Informations de publication
Date de publication:
05 Mar 2024
05 Mar 2024
Historique:
received:
09
01
2024
accepted:
02
02
2024
medline:
6
3
2024
pubmed:
6
3
2024
entrez:
5
3
2024
Statut:
aheadofprint
Résumé
Stiripentol (Diacomit
Identifiants
pubmed: 38443647
doi: 10.1007/s12325-024-02813-0
pii: 10.1007/s12325-024-02813-0
doi:
Types de publication
Journal Article
Review
Langues
eng
Informations de copyright
© 2024. The Author(s).
Références
Astoin Jacques MA. Action de nouveaux alcools x-éthyléniques sur le système nerveux central: action of new ethylenic alcohols on the central nervous system. Eur J Med Chem. 1978;13:41–7.
Shen DD, Levy RH, Savitch JL, Boddy AV, Tombret F, Lepage F. Comparative anticonvulsant potency and pharmacokinetics of (+)-and (-)-enantiomers of stiripentol. Epilepsy Res. 1992;12:29–36. https://doi.org/10.1016/0920-1211(92)90088-b .
doi: 10.1016/0920-1211(92)90088-b
pubmed: 1526226
Poisson M, Huguet F, Savattier A, Bakri-Logeais F, Narcisse G. A new type of anticonvulsant, stiripentol. Pharmacological profile and neurochemical study. Arzneimittelforschung. 1984;34:199–204.
pubmed: 6326778
Lockard JS, Levy RH, Rhodes PH, Moore DF. Stiripentol in acute/chronic efficacy tests in monkey model. Epilepsia. 1985;26:704–12.
doi: 10.1111/j.1528-1157.1985.tb05715.x
pubmed: 4076073
Loiseau P, Strube E, Tor J, Levy RH, Dodrill C. Evaluation neuropsychologique et thérapeutique du stiripentol dans l’épilepsie. [Neurophysiological and therapeutic evaluation of stiripentol in epilepsy. Preliminary results]. Rev Neurol (Paris). 1988;144:165–72.
pubmed: 3368691
Perez J, Chiron C, Musial C, et al. Stiripentol: efficacy and tolerability in children with epilepsy. Epilepsia. 1999;40:1618–26. https://doi.org/10.1111/j.1528-1157.1999.tb02048.x .
doi: 10.1111/j.1528-1157.1999.tb02048.x
pubmed: 10565591
Farwell JR, Anderson GD, Kerr BM, Tor JA, Levy RH. Stiripentol in atypical absence seizures in children: an open trial. Epilepsia. 1993;34:305–11.
doi: 10.1111/j.1528-1157.1993.tb02416.x
pubmed: 8453942
Levy RH, Lin HS, Blehaut HM, Tor JA. Pharmacokinetics of stiripentol in normal man: evidence of nonlinearity. J Clin Pharmacol. 1983;23:523–33.
doi: 10.1002/j.1552-4604.1983.tb01799.x
pubmed: 6662977
Levy RH, Loiseau P, Guyot M, Blehaut HM, Tor J, Moreland TA. Stiripentol kinetics in epilepsy: nonlinearity and interactions. Clin Pharmacol Ther. 1984;36:661–9. https://doi.org/10.1038/clpt.1984.237 .
doi: 10.1038/clpt.1984.237
pubmed: 6488687
Chiron C, Marchand MC, Tran A, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial STICLO study group. Lancet. 2000;356:1638–42.
doi: 10.1016/S0140-6736(00)03157-3
pubmed: 11089822
Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE task force on nosology and definitions. Epilepsia. 2022;63:1349–97. https://doi.org/10.1111/epi.17239 .
doi: 10.1111/epi.17239
pubmed: 35503712
Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011;52(Suppl 2):3–9. https://doi.org/10.1111/j.1528-1167.2011.02994.x .
doi: 10.1111/j.1528-1167.2011.02994.x
pubmed: 21463272
Cooper MS, Mcintosh A, Crompton DE, et al. Mortality in Dravet syndrome. Epilepsy Res. 2016;128:43–7. https://doi.org/10.1016/j.eplepsyres.2016.10.006 .
doi: 10.1016/j.eplepsyres.2016.10.006
pubmed: 27810515
EMA. Diacomit® EPAR. https://www.ema.europa.eu/en/documents/product-information/diacomit-epar-product-information_en.pdf . Accessed 25 Aug 2023.
FDA. Diacomit® US Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/206709s003,207223s003lbl.pdf . Accessed July 2022.
Chiron C, Helias M, Kaminska A, et al. Do children with Dravet syndrome continue to benefit from stiripentol for long through adulthood? Epilepsia. 2018;59:1705–17. https://doi.org/10.1111/epi.14536 .
doi: 10.1111/epi.14536
pubmed: 30132836
Vasquez A, Wirrell EC, Youssef PE. Stiripentol for the treatment of seizures associated with Dravet syndrome in patients 6 months and older and taking clobazam. Expert Rev Neurother. 2023;23:297–309. https://doi.org/10.1080/14737175.2023.2195550 .
doi: 10.1080/14737175.2023.2195550
pubmed: 36975187
Cardenal-Muñoz E, Auvin S, Villanueva V, Cross JH, Zuberi SM, Lagae L, Aibar JÁ. Guidance on Dravet syndrome from infant to adult care: road map for treatment planning in Europe. Epilepsia Open. 2022;7:11–26. https://doi.org/10.1002/epi4.12569 .
doi: 10.1002/epi4.12569
pubmed: 34882995
Wirrell EC, Hood V, Knupp KG, et al. International consensus on diagnosis and management of Dravet syndrome. Epilepsia. 2022;63:1761–77. https://doi.org/10.1111/epi.17274 .
doi: 10.1111/epi.17274
pubmed: 35490361
pmcid: 9543220
Wegmann R, Ilies A, Aurousseau M. Enzymologie pharmaco-cellulaire du mode d’action du stiripentol au cours de l’épilepsie cardiazolique. III. Les métabolismes protidique, nucléoprotidique, lipidique et des protéoglycanes. 23rd ed. Oxford: Pergamon; 1978.
Wegmann R, Ilies A, Aurousseau M. Enzymologie pharmaco-cellulaire du mode d’action du stiripentol au cours de l’épilepsie cardiazolique. II. Le métabolisme glucidique. Oxford: Pergamon; 1978.
Mesnil M, Testa B, Jenner P. Ex vivo inhibition of rat brain cytochrome P-450 activity by stiripentol. Biochem Pharmacol. 1988;37:3619–22.
doi: 10.1016/0006-2952(88)90393-0
pubmed: 3178875
Tran A, Rey E, Pons G, et al. Influence of stiripentol on cytochrome P450-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther. 1997;62:490–504.
doi: 10.1016/S0009-9236(97)90044-8
pubmed: 9390105
Bryson A, Reid C, Petrou S. Fundamental neurochemistry review: GABAA receptor neurotransmission and epilepsy: principles, disease mechanisms and pharmacotherapy. J Neurochem. 2023;165:6–28. https://doi.org/10.1111/jnc.15769 .
doi: 10.1111/jnc.15769
pubmed: 36681890
Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia. 2006;47:704–16. https://doi.org/10.1111/j.1528-1167.2006.00497.x .
doi: 10.1111/j.1528-1167.2006.00497.x
pubmed: 16650136
Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008;60:243–60. https://doi.org/10.1124/pr.108.00505 .
doi: 10.1124/pr.108.00505
pubmed: 18790874
Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56:141–8. https://doi.org/10.1016/j.neuropharm.2008.07.045 .
doi: 10.1016/j.neuropharm.2008.07.045
pubmed: 18760291
Nayeem N, Green TP, Martin IL, Barnard EA. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem. 1994;62:815–8. https://doi.org/10.1046/j.1471-4159.1994.62020815.x .
doi: 10.1046/j.1471-4159.1994.62020815.x
pubmed: 7507518
Forman SA, Miller KW. Mapping general anesthetic sites in heteromeric γ-aminobutyric acid type a receptors reveals a potential for targeting receptor subtypes. Anesth Analg. 2016;123:1263–73. https://doi.org/10.1213/ANE.0000000000001368 .
doi: 10.1213/ANE.0000000000001368
pubmed: 27167687
pmcid: 5073028
Sigel E, Ernst M. The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci. 2018;39:659–71. https://doi.org/10.1016/j.tips.2018.03.006 .
doi: 10.1016/j.tips.2018.03.006
pubmed: 29716746
Masiulis S, Desai R, Uchański T, et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature. 2019;565:454–9. https://doi.org/10.1038/s41586-018-0832-5 .
doi: 10.1038/s41586-018-0832-5
pubmed: 30602790
pmcid: 6370056
Muroi Y, Theusch CM, Czajkowski C, Jackson MB. Distinct structural changes in the GABAA receptor elicited by pentobarbital and GABA. Biophys J. 2009;96:499–509. https://doi.org/10.1016/j.bpj.2008.09.037 .
doi: 10.1016/j.bpj.2008.09.037
pubmed: 19167300
pmcid: 2716461
Jayakar SS, Zhou X, Chiara DC, et al. Identifying drugs that bind selectively to intersubunit general anesthetic sites in the α1β3γ2 GABAAR transmembrane domain. Mol Pharmacol. 2019;95:615–28. https://doi.org/10.1124/mol.118.114975 .
doi: 10.1124/mol.118.114975
pubmed: 30952799
pmcid: 6505378
Fisher JL. The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator. Neuropharmacology. 2009;56:190–7. https://doi.org/10.1016/j.neuropharm.2008.06.004 .
doi: 10.1016/j.neuropharm.2008.06.004
pubmed: 18585399
Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol. 2015;72:53–96. https://doi.org/10.1016/bs.apha.2014.10.002 .
doi: 10.1016/bs.apha.2014.10.002
pubmed: 25600367
Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 2005;6:215–29. https://doi.org/10.1038/nrn1625 .
doi: 10.1038/nrn1625
pubmed: 15738957
Depienne C, Trouillard O, Saint-Martin C, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet. 2009;46:183–91. https://doi.org/10.1136/jmg.2008.062323 .
doi: 10.1136/jmg.2008.062323
pubmed: 18930999
Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27:5903–14. https://doi.org/10.1523/JNEUROSCI.5270-06.2007 .
doi: 10.1523/JNEUROSCI.5270-06.2007
pubmed: 17537961
pmcid: 6672241
Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol. 2010;588:1849–59. https://doi.org/10.1113/jphysiol.2010.187484 .
doi: 10.1113/jphysiol.2010.187484
pubmed: 20194124
pmcid: 2901973
Mayer SA, Claassen J, Lokin J, Mendelsohn F, Dennis LJ, Fitzsimmons B-F. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch Neurol. 2002;59:205–10. https://doi.org/10.1001/archneur.59.2.205 .
doi: 10.1001/archneur.59.2.205
pubmed: 11843690
Grosenbaugh DK, Mott DD. Stiripentol is anticonvulsant by potentiating GABAergic transmission in a model of benzodiazepine-refractory status epilepticus. Neuropharmacology. 2013;67:136–43. https://doi.org/10.1016/j.neuropharm.2012.11.002 .
doi: 10.1016/j.neuropharm.2012.11.002
pubmed: 23168114
Bianchi MT, Botzolakis EJ, Lagrange AH, Macdonald RL. Benzodiazepine modulation of GABA(A) receptor opening frequency depends on activation context: a patch clamp and simulation study. Epilepsy Res. 2009;85:212–20. https://doi.org/10.1016/j.eplepsyres.2009.03.007 .
doi: 10.1016/j.eplepsyres.2009.03.007
pubmed: 19447010
pmcid: 2834588
Luddens H, Korpi ER. GABA antagonists differentiate between recombinant GABAA/benzodiazepine receptor subtypes. Lost Data. 1995;15:6957–62.
Fisher JL. Interactions between modulators of the GABA(A) receptor: stiripentol and benzodiazepines. Eur J Pharmacol. 2011;654:160–5. https://doi.org/10.1016/j.ejphar.2010.12.037 .
doi: 10.1016/j.ejphar.2010.12.037
pubmed: 21237147
pmcid: 3656601
Verleye M, Buttigieg D, Steinschneider R. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels. J Neurosci Res. 2016;94:179–89. https://doi.org/10.1002/jnr.23688 .
doi: 10.1002/jnr.23688
pubmed: 26511438
Auvin S, Lecointe C, Dupuis N, et al. Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature rat brain. Epilepsia. 2013;54:2082–90. https://doi.org/10.1111/epi.12401 .
doi: 10.1111/epi.12401
pubmed: 24117113
Weber JT. Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res. 2004;1:151–71. https://doi.org/10.2174/1567202043480134 .
doi: 10.2174/1567202043480134
pubmed: 16185191
Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.
doi: 10.1152/physrev.1999.79.4.1431
pubmed: 10508238
Stevens M, Peigneur S, Tytgat J. Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol. 2011;2:71. https://doi.org/10.3389/fphar.2011.00071 .
doi: 10.3389/fphar.2011.00071
pubmed: 22084632
pmcid: 3210964
Wang SY, Wang GK. Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad Sci USA. 1998;95:2653–8. https://doi.org/10.1073/pnas.95.5.2653 .
doi: 10.1073/pnas.95.5.2653
pubmed: 9482942
pmcid: 19451
Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XXXIX Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev. 2003;55:575–8.
doi: 10.1124/pr.55.4.7
pubmed: 14657413
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage gated sodium channel genes in epilepsy: mutations, functional studies, and treatment dimensions. Front Neurol. 2021;12: 600050. https://doi.org/10.3389/fneur.2021.600050 .
doi: 10.3389/fneur.2021.600050
pubmed: 33841294
pmcid: 8024648
Talwar D, Hammer MF. SCN8A epilepsy, developmental encephalopathy, and related disorders. Pediatr Neurol. 2021;122:76–83. https://doi.org/10.1016/j.pediatrneurol.2021.06.011 .
doi: 10.1016/j.pediatrneurol.2021.06.011
pubmed: 34353676
Veeramah KR, O’Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90:502–10. https://doi.org/10.1016/j.ajhg.2012.01.006 .
doi: 10.1016/j.ajhg.2012.01.006
pubmed: 22365152
pmcid: 3309181
Riban V, Heulard I, Reversat L, Si Hocine H, Verleye M. Stiripentol inhibits spike-and-wave discharges in animal models of absence seizures: a new mechanism of action involving T-type calcium channels. Epilepsia. 2022;63:1200–10. https://doi.org/10.1111/epi.17201 .
doi: 10.1111/epi.17201
pubmed: 35184274
pmcid: 9314114
Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci. 1992;12:3804–17. https://doi.org/10.1523/JNEUROSCI.12-10-03804.1992 .
doi: 10.1523/JNEUROSCI.12-10-03804.1992
pubmed: 1403085
pmcid: 6575965
Errington AC, Renger JJ, Uebele VN, Crunelli V. State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci. 2010;30:14843–53. https://doi.org/10.1523/JNEUROSCI.2968-10.2010 .
doi: 10.1523/JNEUROSCI.2968-10.2010
pubmed: 21048143
pmcid: 3044870
Rajakulendran S, Hanna MG. The role of calcium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022723. https://doi.org/10.1101/cshperspect.a022723 .
doi: 10.1101/cshperspect.a022723
pubmed: 26729757
pmcid: 4691803
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–43. https://doi.org/10.1002/glia.23247 .
doi: 10.1002/glia.23247
pubmed: 29044647
Oyarzabal A, Marin-Valencia I. Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis. 2019;42:220–36. https://doi.org/10.1002/jimd.12071 .
doi: 10.1002/jimd.12071
pubmed: 30734319
Ashrafi G, Ryan TA. Glucose metabolism in nerve terminals. Curr Opin Neurobiol. 2017;45:156–61. https://doi.org/10.1016/j.conb.2017.03.007 .
doi: 10.1016/j.conb.2017.03.007
pubmed: 28605677
pmcid: 5675126
Dienel GA, Hertz L. Glucose and lactate metabolism during brain activation. J Neurosci Res. 2001;66:824–38. https://doi.org/10.1002/jnr.10079 .
doi: 10.1002/jnr.10079
pubmed: 11746408
Wegmann R, Ilies A, Aurousseau M. Enzymologie pharmaco-cellulaire du mode d’action du stiripentol au cours de l’épilepsie cardiazolique. I. Problèmes généraux et activités respiratoires. Oxford: Pergamon; 1977.
Burgner JW, Ray WJ. The lactate dehydrogenase catalyzed pyruvate adduct reaction: simultaneous general acid-base catalysis involving an enzyme and an external catalyst. Biochemistry. 1984;23:3626–35. https://doi.org/10.1021/bi00311a009 .
doi: 10.1021/bi00311a009
pubmed: 6477888
Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123:3685–92. https://doi.org/10.1172/JCI69741 .
doi: 10.1172/JCI69741
pubmed: 23999443
pmcid: 3754272
Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol. 2016;26:3–17. https://doi.org/10.1111/bpa.12299 .
doi: 10.1111/bpa.12299
pubmed: 26269128
Granchi C, Paterni I, Rani R, Minutolo F. Small-molecule inhibitors of human LDH5. Future Med Chem. 2013;5:1967–91. https://doi.org/10.4155/fmc.13.151 .
doi: 10.4155/fmc.13.151
pubmed: 24175747
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38. https://doi.org/10.1016/j.cmet.2011.08.016 .
doi: 10.1016/j.cmet.2011.08.016
pubmed: 22152301
Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science. 2015;347:1362–7. https://doi.org/10.1126/science.aaa1299 .
doi: 10.1126/science.aaa1299
pubmed: 25792327
Guyon J, Fernandez-Moncada I, Larrieu CM, et al. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol Med. 2022. https://doi.org/10.15252/emmm.202115343 .
doi: 10.15252/emmm.202115343
pubmed: 36278433
pmcid: 9728051
Jiang T-T, Ji C-F, Cheng X-P, et al. α-Mangostin alleviated HIF-1α-mediated angiogenesis in rats with adjuvant-induced arthritis by suppressing aerobic glycolysis. Front Pharmacol. 2021;12:785586. https://doi.org/10.3389/fphar.2021.785586 .
doi: 10.3389/fphar.2021.785586
pubmed: 34987400
pmcid: 8721667
Dhir N, Jain A, Sharma AR, et al. Rat BM-MSCs secretome alone and in combination with stiripentol and ISRIB, ameliorated microglial activation and apoptosis in experimental stroke. Behav Brain Res. 2023;449:114471. https://doi.org/10.1016/j.bbr.2023.114471 .
doi: 10.1016/j.bbr.2023.114471
pubmed: 37146724
Poore RE, Hurst CH, Assimos DG, Holmes RP. Pathways of hepatic oxalate synthesis and their regulation. Am J Physiol. 1997;272:C289–94. https://doi.org/10.1152/ajpcell.1997.272.1.c289 .
doi: 10.1152/ajpcell.1997.272.1.c289
pubmed: 9038835
Le Dudal M, Huguet L, Perez J, et al. Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning. J Clin Invest. 2019;129:2571–7. https://doi.org/10.1172/JCI99822 .
doi: 10.1172/JCI99822
pubmed: 30946030
pmcid: 6538379
Alejo-Armijo A, Cuadrado C, Altarejos J, et al. Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: a contribution to molecular therapies for primary hyperoxalurias. Bioorg Chem. 2022;129:106127. https://doi.org/10.1016/j.bioorg.2022.106127 .
doi: 10.1016/j.bioorg.2022.106127
pubmed: 36113265
Bai Y, Li B, Xie J, et al. Synthesis and evaluation of α-asaronol esters with LDH and GABAA Receptor modulation as anticonvulsant agents. Lett Drug Des Discov. 2020;17:891–904. https://doi.org/10.2174/1570180816666191204104127 .
doi: 10.2174/1570180816666191204104127
Chatterjee T, Das G, Chatterjee BK, Dhar J, Ghosh S, Chakrabarti P. The role of isoaspartate in fibrillation and its prevention by protein-L-isoaspartyl methyltransferase. Biochim Biophys Acta Gen Subj. 2020;1864: 129500. https://doi.org/10.1016/j.bbagen.2019.129500 .
doi: 10.1016/j.bbagen.2019.129500
pubmed: 31785325
Masubuchi Y, Takahashi C, Gendo R. Time-dependent inhibition of CYP1A2 by stiripentol and structurally related methylenedioxyphenyl compounds via metabolic intermediate complex formation. Drug Metab Dispos. 2023. https://doi.org/10.1124/dmd.123.001511 .
doi: 10.1124/dmd.123.001511
pubmed: 37932130
Giraud C, Treluyer JM, Rey E, et al. In vitro and in vivo inhibitory effect of stiripentol on clobazam metabolism. Drug Metab Dispos. 2006;34:608–11. https://doi.org/10.1124/dmd.105.007237 .
doi: 10.1124/dmd.105.007237
pubmed: 16415114
Klein P, Tolbert D, Gidal BE. Drug-drug interactions and pharmacodynamics of concomitant clobazam and cannabidiol or stiripentol in refractory seizures. Epilepsy Behav. 2019;99:106459. https://doi.org/10.1016/j.yebeh.2019.106459 .
doi: 10.1016/j.yebeh.2019.106459
pubmed: 31519475
Kiang TKL, Ho PC, Anari MR, Tong V, Abbott FS, Chang TKH. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci. 2006;94:261–71. https://doi.org/10.1093/toxsci/kfl096 .
doi: 10.1093/toxsci/kfl096
pubmed: 16945988
Voso MT, Santini V, Finelli C, et al. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res. 2009;15:5002–7. https://doi.org/10.1158/1078-0432.CCR-09-0494 .
doi: 10.1158/1078-0432.CCR-09-0494
pubmed: 19638460
Jogamoto T, Yamamoto Y, Fukuda M, et al. Add-on stiripentol elevates serum valproate levels in patients with or without concomitant topiramate therapy. Epilepsy Res. 2017;130:7–12. https://doi.org/10.1016/j.eplepsyres.2016.12.014 .
doi: 10.1016/j.eplepsyres.2016.12.014
pubmed: 28081475
Kerr BM, Martinez-Lage JM, Viteri C, Tor J, Eddy AC, Levy RH. Carbamazepine dose requirements during stiripentol therapy: influence of cytochrome P-450 inhibition by stiripentol. Epilepsia. 1991;32:267–74. https://doi.org/10.1111/j.1528-1157.1991.tb05254.x .
doi: 10.1111/j.1528-1157.1991.tb05254.x
pubmed: 2004631
Cazali N, Tran A, Treluyer JM, et al. Inhibitory effect of stiripentol on carbamazepine and saquinavir metabolism in human. Br J Clin Pharmacol. 2003;56:526–36.
doi: 10.1046/j.0306-5251.2003.01919.x
pubmed: 14651727
pmcid: 1884392
Tran A, Vauzelle-Kervroedan F, Rey E, et al. Effect of stiripentol on carbamazepine plasma concentration and metabolism in epileptic children. Eur J Clin Pharmacol. 1996;50:497–500. https://doi.org/10.1007/s002280050147 .
doi: 10.1007/s002280050147
pubmed: 8858278
Luszczki JJ, Czuczwar SJ. Biphasic characteristic of interactions between stiripentol and carbamazepine in the mouse maximal electroshock-induced seizure model: a three-dimensional isobolographic analysis. Naunyn Schmiedebergs Arch Pharmacol. 2006;374:51–64. https://doi.org/10.1007/s00210-006-0100-3 .
doi: 10.1007/s00210-006-0100-3
pubmed: 16972063
Chiron C, Tonnelier S, Rey E, et al. Stiripentol in childhood partial epilepsy: randomized placebo-controlled trial with enrichment and withdrawal design. J Child Neurol. 2006;21:496–502. https://doi.org/10.1177/08830738060210062101 .
doi: 10.1177/08830738060210062101
pubmed: 16948934
Martin P, Czerwiński M, Limaye PB, et al. In vitro evaluation of fenfluramine and norfenfluramine as victims of drug interactions. Pharmacol Res Perspect. 2022;10:e00958. https://doi.org/10.1002/prp2.958 .
doi: 10.1002/prp2.958
pubmed: 35599345
pmcid: 9124820
Boyd B, Smith S, Gammaitoni A, Galer BS, Farfel GM. A phase I, randomized, open-label, single-dose, 3-period crossover study to evaluate the drug-drug interaction between ZX008 (fenfluramine HCl oral solution) and a regimen of stiripentol, clobazam, and valproate in healthy subjects. Int J Clin Pharmacol Ther. 2019;57:11–9. https://doi.org/10.5414/cp203276 .
doi: 10.5414/cp203276
pubmed: 30336805
Trabs N, Trabs M, Stodieck S, House PM. Influence of stiripentol on perampanel serum levels. Epilepsy Res. 2020;164:106367. https://doi.org/10.1016/j.eplepsyres.2020.106367 .
doi: 10.1016/j.eplepsyres.2020.106367
pubmed: 32446162
Patsalos PN. The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015;56:12–27. https://doi.org/10.1111/epi.12865 .
doi: 10.1111/epi.12865
pubmed: 25495693
Peigné S, Chhun S, Tod M, et al. Population pharmacokinetics of stiripentol in paediatric patients with Dravet syndrome treated with stiripentol, valproate and clobazam combination therapy. Clin Pharmacokinet. 2018;57:739–48. https://doi.org/10.1007/s40262-017-0592-7 .
doi: 10.1007/s40262-017-0592-7
pubmed: 28819726
May TW, Boor R, Mayer T, et al. Concentrations of stiripentol in children and adults with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit. 2012;34:390–7. https://doi.org/10.1097/FTD.0b013e31825dc4a6 .
doi: 10.1097/FTD.0b013e31825dc4a6
pubmed: 22743350
Lin HS, Levy RH. Pharmacokinetic profile of a new anticonvulsant, stiripentol, in the rhesus monkey. Epilepsia. 1983;24:692–703. https://doi.org/10.1111/j.1528-1157.1983.tb04632.x .
doi: 10.1111/j.1528-1157.1983.tb04632.x
pubmed: 6641646
Bendele AM, Ruterbories KJ, Spaethe SM, et al. Correlation of anti-inflammatory activity with peak tissue rather than peak plasma levels of BF389. J Pharmacol Exp Ther. 1992;260:1194–8.
pubmed: 1545387
Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest. 1979;64:145–54. https://doi.org/10.1172/jci109433 .
doi: 10.1172/jci109433
pubmed: 447850
pmcid: 372100
Vincent JC. Stiripentol. Epilepsy Res Suppl. 1991;3:153–6.
pubmed: 1777073
Meirinho S, Rodrigues M, Fortuna A, Falcão A, Alves G. Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: a comprehensive and critical review. J Pharm Anal. 2021;11:405–21. https://doi.org/10.1016/j.jpha.2020.11.005 .
doi: 10.1016/j.jpha.2020.11.005
pubmed: 34513117
Shen DD, Levy RH, Moor MJ, Savitch JL. Efficacy of stiripentol in the intravenous pentylenetetrazol infusion seizure model in the rat. Epilepsy Res. 1990;7:40–8.
doi: 10.1016/0920-1211(90)90052-W
pubmed: 2292245
Arends RH, Zhang K, Levy RH, Baillie TA, Shen DD. Stereoselective pharmacokinetics of stiripentol: an explanation for the development of tolerance to anticonvulsant effect. Epilepsy Res. 1994;18:91–6. https://doi.org/10.1016/0920-1211(94)90001-9 .
doi: 10.1016/0920-1211(94)90001-9
pubmed: 7957040
Dai Q, Zhang P, Jin Y, et al. Using self-nanoemulsifying system to improve oral bioavailability of a pediatric antiepileptic agent stiripentol: formulation and pharmacokinetics studies. AAPS PharmSciTech. 2020;21:192. https://doi.org/10.1208/s12249-020-01730-z .
doi: 10.1208/s12249-020-01730-z
pubmed: 32661608
Pieri F, Wegmann R, Astoin J. Etude pharmacocinétique du 3H-stiripentol chez le rat [Pharmacokinetic study of 3H-stiripentol in rats (author’s transl)]. Eur J Drug Metab Pharmacokinet. 1982;7:5–10.
doi: 10.1007/BF03189536
pubmed: 7067724
Sarlo GL, Holton KF. Brain concentrations of glutamate and GABA in human epilepsy: a review. Seizure. 2021;91:213–27. https://doi.org/10.1016/j.seizure.2021.06.028 .
doi: 10.1016/j.seizure.2021.06.028
pubmed: 34233236
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015. https://doi.org/10.1101/cshperspect.a022426 .
doi: 10.1101/cshperspect.a022426
pubmed: 26033084
pmcid: 4448698
Luszczki JJ, Trojnar MK, Ratnaraj N, Patsalos PN, Czuczwar SJ. Interactions of stiripentol with clobazam and valproate in the mouse maximal electroshock-induced seizure model. Epilepsy Res. 2010;90:188–98. https://doi.org/10.1016/j.eplepsyres.2010.04.006 .
doi: 10.1016/j.eplepsyres.2010.04.006
pubmed: 20493662
Mott DD, Grosenbaugh DK, Fisher JL. Polytherapy with stiripentol: consider more than just metabolic interactions. Epilepsy Behav. 2013;29:585. https://doi.org/10.1016/j.yebeh.2013.09.008 .
doi: 10.1016/j.yebeh.2013.09.008
pubmed: 24094845
Wirrell EC, Laux L, Franz DN, et al. Stiripentol in Dravet syndrome: results of a retrospective US study. Epilepsia. 2013;54:1595–604. https://doi.org/10.1111/epi.12303 .
doi: 10.1111/epi.12303
pubmed: 23848835
Inoue Y, Ohtsuka Y, Oguni H, et al. Stiripentol open study in Japanese patients with Dravet syndrome. Epilepsia. 2009;50:2362–8. https://doi.org/10.1111/j.1528-1167.2009.02179.x .
doi: 10.1111/j.1528-1167.2009.02179.x
pubmed: 19552653
Cao D, Ohtani H, Ogiwara I, et al. Efficacy of stiripentol in hyperthermia-induced seizures in a mouse model of Dravet syndrome. Epilepsia. 2012;53:1140–5. https://doi.org/10.1111/j.1528-1167.2012.03497.x .
doi: 10.1111/j.1528-1167.2012.03497.x
pubmed: 22578034
Hawkins NA, Anderson LL, Gertler TS, Laux L, George AL, Kearney JA. Screening of conventional anticonvulsants in a genetic mouse model of epilepsy. Ann Clin Transl Neurol. 2017;4:326–39. https://doi.org/10.1002/acn3.413 .
doi: 10.1002/acn3.413
pubmed: 28491900
pmcid: 5420810
Reid CA, Leaw B, Richards KL, et al. Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome. Brain. 2014;137:1701–15. https://doi.org/10.1093/brain/awu077 .
doi: 10.1093/brain/awu077
pubmed: 24747835
Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci. 1992;12:4151–72. https://doi.org/10.1523/JNEUROSCI.12-11-04151.1992 .
doi: 10.1523/JNEUROSCI.12-11-04151.1992
pubmed: 1331359
pmcid: 6576006
Chiron C, Chemaly N, Chancharme L, Nabbout R. Initiating stiripentol before 2 years of age in patients with Dravet syndrome is safe and beneficial against status epilepticus. Dev Med Child Neurol. 2023;65:1607–16. https://doi.org/10.1111/dmcn.15638 .
doi: 10.1111/dmcn.15638
pubmed: 37198755
Jones-Davis DM, Macdonald RL. GABA(A) receptor function and pharmacology in epilepsy and status epilepticus. Curr Opin Pharmacol. 2003;3:12–8. https://doi.org/10.1016/s1471-4892(02)00015-2 .
doi: 10.1016/s1471-4892(02)00015-2
pubmed: 12550736
Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. Lost Data. 2005;25:7724–33.
Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci. 2008;28:2527–38. https://doi.org/10.1523/JNEUROSCI.3426-07.2008 .
doi: 10.1523/JNEUROSCI.3426-07.2008
pubmed: 18322097
pmcid: 2880323
Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28:13341–53. https://doi.org/10.1523/JNEUROSCI.1421-08.2008 .
doi: 10.1523/JNEUROSCI.1421-08.2008
pubmed: 19052226
pmcid: 6671595
Graef JD, Nordskog BK, Wiggins WF, Godwin DW. An acquired channelopathy involving thalamic T-type Ca2+ channels after status epilepticus. J Neurosci. 2009;29:4430–41. https://doi.org/10.1523/JNEUROSCI.0198-09.2009 .
doi: 10.1523/JNEUROSCI.0198-09.2009
pubmed: 19357270
pmcid: 2754076
Strzelczyk A, Kortland L-M, Knake S, Rosenow F. Stiripentol for the treatment of super-refractory status epilepticus. Acta Neurol Scand. 2015;132:435–9. https://doi.org/10.1111/ane.12403 .
doi: 10.1111/ane.12403
pubmed: 25809474
Uchida Y, Kato D, Toyoda T, et al. Combination of ketogenic diet and stiripentol for super-refractory status epilepticus: a case report. J Neurol Sci. 2017;373:35–7. https://doi.org/10.1016/j.jns.2016.12.020 .
doi: 10.1016/j.jns.2016.12.020
pubmed: 28131220
Uchida Y, Terada K, Madokoro Y, et al. Stiripentol for the treatment of super-refractory status epilepticus with cross-sensitivity. Acta Neurol Scand. 2018;137:432–7. https://doi.org/10.1111/ane.12888 .
doi: 10.1111/ane.12888
pubmed: 29313881
Ngo D-H, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules. 2019. https://doi.org/10.3390/molecules24152678 .
doi: 10.3390/molecules24152678
pubmed: 31344785
pmcid: 6696076
Vandevrede L, Tavassoli E, Luo J, et al. Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABA(A) receptor potentiation. Br J Pharmacol. 2014;171:389–402. https://doi.org/10.1111/bph.12454 .
doi: 10.1111/bph.12454
pubmed: 24116891
Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Warter JM. Enhancement of spike and wave discharges by GABAmimetic drugs in rats with spontaneous petit-mal-like epilepsy. Neurosci Lett. 1984;44:91–4. https://doi.org/10.1016/0304-3940(84)90226-x .
doi: 10.1016/0304-3940(84)90226-x
pubmed: 6425742
Cope DW, Di Giovanni G, Fyson SJ, et al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med. 2009;15:1392–8. https://doi.org/10.1038/nm.2058 .
doi: 10.1038/nm.2058
pubmed: 19966779
pmcid: 2824149
Micheletti G, Vergnes M, Marescaux C, et al. Antiepileptic drug evaluation in a new animal model: spontaneous petit mal epilepsy in the rat. Arzneimittelforschung. 1985;35:483–5.
pubmed: 3922381
Duveau V, Buhl DL, Evrard A, et al. Pronounced antiepileptic activity of the subtype-selective GABAA -positive allosteric modulator PF-06372865 in the GAERS absence epilepsy model. CNS Neurosci Ther. 2019;25:255–60. https://doi.org/10.1111/cns.13046 .
doi: 10.1111/cns.13046
pubmed: 30101518
Sada N, Suto S, Suzuki M, Usui S, Inoue T. Upregulation of lactate dehydrogenase A in a chronic model of temporal lobe epilepsy. Epilepsia. 2020;61:e37–42. https://doi.org/10.1111/epi.16488 .
doi: 10.1111/epi.16488
pubmed: 32202309
Scharfman HE. Neuroscience. Metabolic control of epilepsy. Science. 2015;347:1312–3. https://doi.org/10.1126/science.aaa9607 .
doi: 10.1126/science.aaa9607
pubmed: 25792315
Rho JM. Inhibition of lactate dehydrogenase to treat epilepsy. N Engl J Med. 2015;373:187–9. https://doi.org/10.1056/NEJMcibr1503558 .
doi: 10.1056/NEJMcibr1503558
pubmed: 26154793
Miljanovic N, van Dijk RM, Buchecker V, Potschka H. Metabolomic signature of the Dravet syndrome: a genetic mouse model study. Epilepsia. 2021;62:2000–14. https://doi.org/10.1111/epi.16976 .
doi: 10.1111/epi.16976
pubmed: 34223647
Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369:649–58. https://doi.org/10.1056/NEJMra1301564 .
doi: 10.1056/NEJMra1301564
pubmed: 23944302
Xian Z-Y, Liu J-M, Chen Q-K, et al. Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumour Biol. 2015;36:8093–100. https://doi.org/10.1007/s13277-015-3540-x .
doi: 10.1007/s13277-015-3540-x
pubmed: 25983002
Shi M, Cui J, Du J, et al. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin Cancer Res. 2014;20:4370–80. https://doi.org/10.1158/1078-0432.CCR-14-0186 .
doi: 10.1158/1078-0432.CCR-14-0186
pubmed: 24947925
pmcid: 4134726
Zhao YH, Zhou M, Liu H, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28:3689–701. https://doi.org/10.1038/onc.2009.229 .
doi: 10.1038/onc.2009.229
pubmed: 19668225
Mohammad GH, Olde Damink SWM, Malago M, Dhar DK, Pereira SP. Pyruvate kinase M2 and lactate dehydrogenase a are overexpressed in pancreatic cancer and correlate with poor outcome. PLoS ONE. 2016;11:e0151635. https://doi.org/10.1371/journal.pone.0151635 .
doi: 10.1371/journal.pone.0151635
pubmed: 26989901
pmcid: 4798246
Cui J, Quan M, Jiang W, et al. Suppressed expression of LDHB promotes pancreatic cancer progression via inducing glycolytic phenotype. Med Oncol. 2015;32:143. https://doi.org/10.1007/s12032-015-0589-8 .
doi: 10.1007/s12032-015-0589-8
pubmed: 25807933
Yadav A, Alnakhli A, Vemana HP, Bhutkar S, Muth A, Dukhande VV. Repurposing an antiepileptic drug for the treatment of glioblastoma. Pharm Res. 2022;39:2871–83. https://doi.org/10.1007/s11095-022-03399-4 .
doi: 10.1007/s11095-022-03399-4
pubmed: 36195821
pmcid: 10088866
Khan F, Lin Y, Ali H, et al. LDHA-regulated tumor-macrophage symbiosis promotes glioblastoma progression. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-3401154/v1 .
doi: 10.21203/rs.3.rs-3401154/v1
pubmed: 37961429
pmcid: 10602051
Bonuccelli G, Peiris-Pages M, Ozsvari B, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: telomerase drives tumor cell heterogeneity. Oncotarget. 2017;8:9868–84. https://doi.org/10.18632/oncotarget.14196 .
doi: 10.18632/oncotarget.14196
pubmed: 28039467
Shin MC, Lee T-K, Lee J-C, et al. Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus. Korean J Physiol Pharmacol. 2022;26:47–57. https://doi.org/10.4196/kjpp.2022.26.1.47 .
doi: 10.4196/kjpp.2022.26.1.47
pubmed: 34965995
pmcid: 8723979
Fujiwara A, Nakao K, Ueno T, Matsumura S, Ito S, Minami T. Stiripentol alleviates neuropathic pain in L5 spinal nerve-transected mice. J Anesth. 2020;34:373–81. https://doi.org/10.1007/s00540-020-02762-2 .
doi: 10.1007/s00540-020-02762-2
pubmed: 32189128
Lynch A, Pearson P, Savinov SN, Li AY, Rich SM. Lactate dehydrogenase inhibitors suppress Borrelia burgdorferi growth in vitro. Pathogens. 2023. https://doi.org/10.3390/pathogens12070962 .
doi: 10.3390/pathogens12070962
pubmed: 37513809
pmcid: 10384987
Inoue Y, Ohtsuka Y. Effectiveness of add-on stiripentol to clobazam and valproate in Japanese patients with Dravet syndrome: additional supportive evidence. Epilepsy Res. 2014;108:725–31. https://doi.org/10.1016/j.eplepsyres.2014.02.008 .
doi: 10.1016/j.eplepsyres.2014.02.008
pubmed: 24630050