Whole-genome sequencing and comparative genomics reveal candidate genes associated with quality traits in Dioscorea alata.

Dioscorea alata Comparative genomics Flavonoids Pectin Starch Texture

Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
06 Mar 2024
Historique:
received: 22 11 2023
accepted: 16 02 2024
medline: 6 3 2024
pubmed: 6 3 2024
entrez: 5 3 2024
Statut: epublish

Résumé

Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, β-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.

Sections du résumé

BACKGROUND BACKGROUND
Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam.
METHODS AND RESULTS RESULTS
Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, β-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data.
CONCLUSIONS CONCLUSIONS
The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.

Identifiants

pubmed: 38443859
doi: 10.1186/s12864-024-10135-2
pii: 10.1186/s12864-024-10135-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

248

Subventions

Organisme : Bill and Melinda Gates Foundation
ID : OPP1178942

Informations de copyright

© 2024. The Author(s).

Références

Xiao N, Pan C, Li Y, Wu Y, Cai Y, Lu Y, et al. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice. Genome Biol. 2021;22:283.
pubmed: 34615543 pmcid: 8493723 doi: 10.1186/s13059-021-02488-8
Domínguez M, Dugas E, Benchouaia M, Leduque B, Jiménez-Gómez JM, Colot V, et al. The impact of transposable elements on tomato diversity. Nat Commun. 2020;11:4058.
pubmed: 32792480 pmcid: 7426864 doi: 10.1038/s41467-020-17874-2
Butelli E, Licciardello C, Ramadugu C, Durand-Hulak M, Celant A, Reforgiato Recupero G, et al. Noemi Controls Production of Flavonoid Pigments and Fruit Acidity and Illustrates the Domestication Routes of Modern Citrus Varieties. Curr Biol. 2019;29:158-164.e2.
pubmed: 30581020 doi: 10.1016/j.cub.2018.11.040
Lebot V, Trilles B, Noyer JL, Modesto J. Genetic relationships between Dioscorea alata L. cultivars. 1998;45:499–509.
Sharif BM, Burgarella C, Cormier F, Mournet P, Causse S, Van KN, et al. Genome-wide genotyping elucidates the geographical diversification and dispersal of the polyploid and clonally propagated yam (Dioscorea alata). Ann Bot. 2020;126:1029–38.
pubmed: 32592585 pmcid: 7596366 doi: 10.1093/aob/mcaa122
Arnau G, Nemorin A, Maledon E, Abraham K. Revision of ploidy status of Dioscorea alata L. (Dioscoreaceae) by cytogenetic and microsatellite segregation analysis. Theor Appl Genet. 2009;118:1239–49.
pubmed: 19253018 doi: 10.1007/s00122-009-0977-6
Cormier F, Martin G, Vignes H, Lachman L, Cornet D, Faure Y, et al. Genetic control of flowering in greater yam (Dioscorea alata L.). BMC Plant Biol. 2021;21:163.
pubmed: 33794780 pmcid: 8015048 doi: 10.1186/s12870-021-02941-7
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, Nnabue I, et al. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nat Commun. 2022;13:2001.
pubmed: 35422045 pmcid: 9010478 doi: 10.1038/s41467-022-29114-w
Ehounou AE, Cormier F, Maledon E, Nudol E, Vignes H, Gravillon MC, et al. Identification and validation of QTLs for tuber quality related traits in greater yam (Dioscorea alata L.). Sci Rep. 2022;12:8423.
pubmed: 35589821 pmcid: 9120205 doi: 10.1038/s41598-022-12135-2
Gatarira C, Agre P, Matsumoto R, Edemodu A, Adetimirin V, Bhattacharjee R, et al. Genome-Wide Association Analysis for Tuber Dry Matter and Oxidative Browning in Water Yam (Dioscorea alata L.). Plants. 2020;9:969.
pubmed: 32751829 pmcid: 7464735 doi: 10.3390/plants9080969
Tamiru M, Natsume S, Takagi H, White B, Yaegashi H, Shimizu M, et al. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biol. 2017;15:86.
pubmed: 28927400 pmcid: 5604175 doi: 10.1186/s12915-017-0419-x
Norman PE, Agre PA, Asiedu R, Asfaw A. Multiple-Traits Selection in White Guinea Yam (Dioscorea rotundata) Genotypes. Plants. 2022;11:3003.
pubmed: 36365454 pmcid: 9658037 doi: 10.3390/plants11213003
Chaïr H, Arnau G, Mota AZ. Yam Genomics. In: Underutilised Crop Genomes. Switzerland: Springer; 2022. p. 373–89.
Scarcelli N, Cubry P, Akakpo R, Thuillet A-C, Obidiegwu J, Baco MN, et al. Yam genomics supports West Africa as a major cradle of crop domestication. Sci Adv. 2019;5:eaaw1947.
pubmed: 31114806 pmcid: 6527260 doi: 10.1126/sciadv.aaw1947
Dufour D, Hershey C, Hamaker BR, Lorenzen J. Integrating end-user preferences into breeding programmes for roots, tubers and bananas. Int J Food Sci Technol. 2021;56:1071–5.
pubmed: 33776221 pmcid: 7986057 doi: 10.1111/ijfs.14911
Honfozo L, Adinsi L, Bouniol A, Adetonah S, Forsythe L, Kleih U, et al. Boiled yam end-user preferences and implications for trait evaluation. Int J Food Sci Technol. 2021;56:1447–57.
pubmed: 33776245 doi: 10.1111/ijfs.14707
Alves-Pereira A, Zucchi MI, Clement CR, Viana JPG, Pinheiro JB, Veasey EA, et al. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties. Sci Rep. 2022;12:1268.
pubmed: 35075210 pmcid: 8786832 doi: 10.1038/s41598-022-05160-8
Ross HA, Wright KM, McDougall GJ, Roberts AG, Chapman SN, Morris WL, et al. Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture. J Exp Bot. 2011;62:371–81.
pubmed: 20855456 doi: 10.1093/jxb/erq280
Ma R, Zhang M, Yang X, Guo J, Fan Y. Transcriptome analysis reveals genes related to the synthesis and metabolism of cell wall polysaccharides in goji berry ( Lycium barbarum L.) from various regions. J Sci Food Agric. 2023;103:7050–60.
pubmed: 37340801 doi: 10.1002/jsfa.12791
He Y, Zhu D, Sun Y, Wang Q, Zhu L, Zeng H. Metabonomic Profiling Analyses Reveal ANS Upregulation to Enhance the Flavonoid Pathway of Purple-Fleshed Sweet Potato Storage Root in Response to Deep Shading. Agronomy. 2021;11:737.
doi: 10.3390/agronomy11040737
Dossa K, Morel A, Houngbo ME, Mota AZ, Malédon E, Irep JL, et al. Genome-wide association studies reveal novel loci controlling tuber flesh color and oxidative browning in Dioscorea alata. J Sci Food Agric. 2023.
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–83.
pubmed: 20075913 doi: 10.1038/nature08670
International Rice Genome Sequencing Project, Sasaki T. The map-based sequence of the rice genome. Nature. 2005;436:793–800.
doi: 10.1038/nature03895
Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, et al. The Cassava Genome: Current Progress. Future Directions Trop Plant Biol. 2012;5:88–94.
pubmed: 22523606 doi: 10.1007/s12042-011-9088-z
Marks RA, Hotaling S, Frandsen PB, VanBuren R. Representation and participation across 20 years of plant genome sequencing. Nat Plants. 2021;7:1571–8.
pubmed: 34845350 pmcid: 8677620 doi: 10.1038/s41477-021-01031-8
Bolger ME, Arsova B, Usadel B. Plant genome and transcriptome annotations: from misconceptions to simple solutions. Brief Bioinform. 2018;19(3):437–49.
pubmed: 28062412
Mota APZ, Fernandez D, Arraes FBM, Petitot A-S, de Melo BP, de Sa MEL, et al. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Mol Genet Genomics. 2020;295:1063–78.
pubmed: 32333171 doi: 10.1007/s00438-020-01677-7
Garnier S, Muschelli J. Rvision - A computer vision library for R. 2022. https://swarm-lab.github.io/Rvision/ .
Buera MP, Lozano R, Petriella C. Definition of colour in the non enzymatic browning process. Farbe. 1986;32:318–22.
Cormier F, Lawac F, Maledon E, Gravillon M-C, Nudol E, Mournet P, et al. A reference high-density genetic map of greater yam (Dioscorea alata L.). TAG Theor Appl Genet Theor Angew Genet. 2019;132:1733.
doi: 10.1007/s00122-019-03311-6
Andrews S, et al. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ .
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv. 2013:1303.3997.
García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–9.
pubmed: 22914218 doi: 10.1093/bioinformatics/bts503
Van der Auwera GA, O’Connor BD. Genomics in the cloud: using Docker, GATK, and WDL in Terra. O’Reilly Media; 2020.
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
pubmed: 22728672 doi: 10.4161/fly.19695
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
pubmed: 21653522 pmcid: 3137218 doi: 10.1093/bioinformatics/btr330
Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics. 2011;12:246.
pubmed: 21682921 pmcid: 3146885 doi: 10.1186/1471-2105-12-246
Delignette-Muller ML, Dutang C. fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64(4):1–34.
doi: 10.18637/jss.v064.i04
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49:W317–25.
pubmed: 34086934 pmcid: 8265193 doi: 10.1093/nar/gkab447
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
pubmed: 26059717 doi: 10.1093/bioinformatics/btv351
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
pubmed: 26243257 pmcid: 4531804 doi: 10.1186/s13059-015-0721-2
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.
pubmed: 26356912 pmcid: 4720993 doi: 10.1109/TVCG.2014.2346248
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
pubmed: 17586829 doi: 10.1093/bioinformatics/btm308
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.
pubmed: 27043002 doi: 10.1038/nbt.3519
Leng Y, Yang Y, Ren D, Huang L, Dai L, Wang Y, et al. A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence. Plant Physiol. 2017;174:1151–66.
pubmed: 28455404 pmcid: 5462006 doi: 10.1104/pp.16.01625
Banda L, Kyallo M, Domelevo Entfellner J-B, Moyo M, Swanckaert J, Mwanga ROM, et al. Analysis of β-amylase gene (Amyβ) variation reveals allele association with low enzyme activity and increased firmness in cooked sweetpotato (Ipomoea batatas) from East Africa. J Agric Food Res. 2021;4: 100121.
pubmed: 34085050 pmcid: 8135125
Sampedro J, Valdivia ER, Fraga P, Iglesias N, Revilla G, Zarra I. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone. Plant Physiol. 2017;173:1017–30.
pubmed: 27956490 doi: 10.1104/pp.16.01713
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
pubmed: 23060891 pmcid: 3460232 doi: 10.3389/fpls.2012.00222
Li C, Wu H-M, Cheung AY. FERONIA and Her Pals: Functions and Mechanisms. Plant Physiol. 2016;171:2379–92.
pubmed: 27342308 pmcid: 4972288 doi: 10.1104/pp.16.00667
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry. 2021;181: 112588.
pubmed: 33232863 doi: 10.1016/j.phytochem.2020.112588
Richmond TA, Somerville CR. The Cellulose Synthase Superfamily. Plant Physiol. 2000;124:495–8.
pubmed: 11027699 pmcid: 1539280 doi: 10.1104/pp.124.2.495
Miao H, Sun P, Liu Q, Jia C, Liu J, Hu W, et al. Soluble starch synthase III-1 in amylopectin metabolism of banana fruit: characterization, expression, enzyme activity, and functional analyses. Front Plant Sci. 2017;8:454.
pubmed: 28424724 pmcid: 5371607 doi: 10.3389/fpls.2017.00454
Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci. 2005;102:11118–23.
pubmed: 16046541 pmcid: 1180623 doi: 10.1073/pnas.0503410102
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14:840–52.
pubmed: 24240513 doi: 10.1038/nrg3605
Garcia-Gimenez G, Barakate A, Smith P, Stephens J, Khor SF, Doblin MS, et al. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant J. 2020;104:1009–22.
pubmed: 32890421 doi: 10.1111/tpj.14977
Kouadio OK, N’dri DY, Nindjin C, Marti A, Casiraghi MC, Faoro F, et al. Effect of resistant starch on the cooking quality of yam ( Dioscorea spp.) and cassava ( Manihot esculenta ) based paste products. Int J Food Sci Nutr. 2013;64:484–93.
pubmed: 23215529 doi: 10.3109/09637486.2012.749839
Leah R, Kigel J, Svendsen I, Mundy J. Biochemical and Molecular Characterization of a Barley Seed β-Glucosidase. J Biol Chem. 1995;270:15789–97.
pubmed: 7797581 doi: 10.1074/jbc.270.26.15789
Watcharatpong P, Kaga A, Chen X, Somta P. Narrowing Down a Major QTL Region Conferring Pod Fiber Contents in Yardlong Bean (Vigna unguiculata), a Vegetable Cowpea. Genes. 2020;11:363.
pubmed: 32230893 pmcid: 7230914 doi: 10.3390/genes11040363
Atmodjo MA, Hao Z, Mohnen D. Evolving Views of Pectin Biosynthesis. Annu Rev Plant Biol. 2013;64:747–79.
pubmed: 23451775 doi: 10.1146/annurev-arplant-042811-105534
Ngolong Ngea GL, Guillon F, Essia Ngang JJ, Bonnin E, Bouchet B, Saulnier L. Modification of cell wall polysaccharides during retting of cassava roots. Food Chem. 2016;213:402–9.
pubmed: 27451197 doi: 10.1016/j.foodchem.2016.06.107
Mu W, Hassanin HAM, Zhou L, Jiang B. Chemistry Behind Rare Sugars and Bioprocessing. J Agric Food Chem. 2018;66:13343–5.
pubmed: 30543101 doi: 10.1021/acs.jafc.8b06293
Zhu F. Isolation, Composition, Structure, Properties, Modifications, and Uses of Yam Starch. Compr Rev Food Sci Food Saf. 2015;14:357–86.
doi: 10.1111/1541-4337.12134
Burton RA, Fincher GB. Current challenges in cell wall biology in the cereals and grasses. Front Plant Sci. 2012;3:130.
pubmed: 22715340 pmcid: 3375588 doi: 10.3389/fpls.2012.00130
Singh K, Rani A, Kumar S, Sood P, Mahajan M, Yadav SK, et al. An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis). Tree Physiol. 2008;28:1349–56.
pubmed: 18595847 doi: 10.1093/treephys/28.9.1349
Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Forkmann G, et al. Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed. 2002;9:33–41.
doi: 10.1023/A:1019204531262
Jiang F, Wang J-Y, Jia H-F, Jia W-S, Wang H-Q, Xiao M. RNAi-Mediated Silencing of the Flavanone 3-Hydroxylase Gene and Its Effect on Flavonoid Biosynthesis in Strawberry Fruit. J Plant Growth Regul. 2013;32:182–90.
doi: 10.1007/s00344-012-9289-1
Wu Z-G, Jiang W, Mantri N, Bao X-Q, Chen S-L, Tao Z-M. Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers. BMC Genomics. 2015;16:346.
pubmed: 25924983 pmcid: 4415240 doi: 10.1186/s12864-015-1547-8

Auteurs

Ana Paula Zotta Mota (APZ)

UMR AGAP, CIRAD, 34398, Montpellier, France.
AGAP, Univ Montpellier, CIRAD, INRAe, Montpellier SupAgro, Montpellier, France.
Université Côte d'Azur, Institut Sophia Agrobiotech, INRAE, CNRS, Sophia Antipolis, PACA, 06903, France.

Komivi Dossa (K)

UMR AGAP, CIRAD, 34398, Montpellier, France.
CIRAD, UMR AGAP Institut, 97170, Petit Bourg, Guadeloupe, France.

Mathieu Lechaudel (M)

UMR Qualisud, CIRAD, F97130, Capesterre-Belle-Eau, Guadeloupe, France.
QualiSud, Université Montpellier, Institut Agro, CIRAD, Avignon Université, Université de La Réunion, 34398, Montpellier, France.

Denis Cornet (D)

UMR AGAP, CIRAD, 34398, Montpellier, France.
AGAP, Univ Montpellier, CIRAD, INRAe, Montpellier SupAgro, Montpellier, France.

Pierre Mournet (P)

UMR AGAP, CIRAD, 34398, Montpellier, France.
AGAP, Univ Montpellier, CIRAD, INRAe, Montpellier SupAgro, Montpellier, France.

Sylvain Santoni (S)

AGAP, Univ Montpellier, CIRAD, INRAe, Montpellier SupAgro, Montpellier, France.

David Lopez (D)

UMR AGAP, CIRAD, 34398, Montpellier, France. david.lopez@cirad.fr.
AGAP, Univ Montpellier, CIRAD, INRAe, Montpellier SupAgro, Montpellier, France. david.lopez@cirad.fr.

Hana Chaïr (H)

UMR AGAP, CIRAD, 34398, Montpellier, France. hana.chair@cirad.fr.
AGAP, Univ Montpellier, CIRAD, INRAe, Montpellier SupAgro, Montpellier, France. hana.chair@cirad.fr.

Classifications MeSH