High resolution dynamic ultrasound atlas of embryonic and fetal development of the common marmoset.

Atlas Development Embryology Marmoset Ultrasound

Journal

Journal of assisted reproduction and genetics
ISSN: 1573-7330
Titre abrégé: J Assist Reprod Genet
Pays: Netherlands
ID NLM: 9206495

Informations de publication

Date de publication:
06 Mar 2024
Historique:
received: 25 01 2024
accepted: 12 02 2024
medline: 6 3 2024
pubmed: 6 3 2024
entrez: 6 3 2024
Statut: aheadofprint

Résumé

The common marmoset (Callithrix jacchus) provides an ideal model to study early development of primates, and an in vivo platform to validate conclusions from in vitro studies of human embryos and embryo models. Currently, however, no established staging atlas of marmoset embryonic development exists. Using high-resolution, longitudinal ultrasound scans on live pregnant marmosets, we present the first dynamic in vivo imaging of entire primate gestation beginning with attachment until the last day before birth. Our study unveils the first dynamic images of an in vivo attached mammalian embryo developing in utero, and the intricacies of the delayed development period unique to the common marmoset amongst primates, revealing a window for somatic interventions. Established obstetric and embryologic measurements for each scan were used comparatively with the standardized Carnegie staging of human development to highlight similarities and differences. Our study also allows for tracking the development of major organs. We focus on the ontogeny of the primate heart and brain. Finally, input ultrasound images were used to train deep neural networks to accurately determine the gestational age. All our ultrasounds and staging data recording are posted online so that the atlas can be used as a community resource toward monitoring and managing marmoset breeding colonies. The temporal and spatial resolution of ultrasound achieved in this study demonstrates the promise of noninvasive imaging in the marmoset for the in vivo study of primate-specific aspects of embryonic and fetal development.

Identifiants

pubmed: 38446290
doi: 10.1007/s10815-024-03072-2
pii: 10.1007/s10815-024-03072-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol Reprod. 2017;96(2):277–87. https://doi.org/10.1095/biolreprod.116.146514 .
doi: 10.1095/biolreprod.116.146514 pubmed: 28203717 pmcid: 5967451
E. and M. D. on E. and L. S. I. for L. A. R. R. on S. and W. in L. A. U. National Academies of Sciences, L. Anestidou, A. F. Johnson. Care, use, and welfare of marmosets as animal models for gene editing-based biomedical research. National Academies Press (US), 2019. https://doi.org/10.17226/25356
Chambers PL, Hearn JP. Embryonic, foetal and placental development in the common marmoset monkey (Callithrix jacchus). J Zool. 1985;207(4):545–61. https://doi.org/10.1111/j.1469-7998.1985.tb04951.x .
doi: 10.1111/j.1469-7998.1985.tb04951.x
Hearn JP, Abbott DH, Chambers PC, Hodges JK, Lunn SF. Use of the common marmoset, Callithrix jacchus, in reproductive research. Primates Med. 1978;10:40–9 (PMID:417331).
pubmed: 417331
Schiel N, Souto A. The common marmoset: an overview of its natural history, ecology and behavior. Dev Neurobiol. 2017;77(3):244–62. https://doi.org/10.1002/dneu.22458 .
doi: 10.1002/dneu.22458 pubmed: 27706919
Park JE, Zhang XF, Choi S-H, Okahara J, Sasaki E, Silva AC. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep. 2016;6:34931. https://doi.org/10.1038/srep34931 .
doi: 10.1038/srep34931 pubmed: 27725685 pmcid: 5057151
Park JE, Silva AC. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am J Primatol. 2019;81(2):e22931. https://doi.org/10.1002/ajp.22931 .
doi: 10.1002/ajp.22931 pubmed: 30585654
Sasaki E. Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci Res. 2015;93:110–5. https://doi.org/10.1016/j.neures.2015.01.011 .
doi: 10.1016/j.neures.2015.01.011 pubmed: 25683291
Tomioka I, et al. Generation of transgenic marmosets using a tetracyclin-inducible transgene expression system as a neurodegenerative disease model. Biol Reprod. 2017;97(5):772–80. https://doi.org/10.1093/biolre/iox129 .
doi: 10.1093/biolre/iox129 pubmed: 29045563
Jaquish CE, Toal RL, Tardif SD, Carson RL. Use of ultrasound to monitor prenatal growth and development in the common marmoset (Callithrix jacchus). Am J Primatol. 1995;36(4):259–75. https://doi.org/10.1002/ajp.1350360402 .
doi: 10.1002/ajp.1350360402 pubmed: 31924098
Tardif SD, Jaquish CE, Toal RL, Layne DG, Power RA. Estimation of gestational ages in the common marmoset (Callithrix jacchus) from published prenatal growth curves. J Med Primatol. 1998;27(1):28–32. https://doi.org/10.1111/j.1600-0684.1998.tb00065.x .
doi: 10.1111/j.1600-0684.1998.tb00065.x pubmed: 9606040
Moore HDM, Gems S, Hearn JP. Early implantation stages in the marmoset monkey (Callithrix jacchus). Am J Anat. 1985;172(4):265–78. https://doi.org/10.1002/aja.1001720402 .
doi: 10.1002/aja.1001720402 pubmed: 3922211
Smith CA, Moore HD, Hearn JP. The ultrastructure of early implantation in the marmoset monkey (Callithrix jacchus). Anat Embryol (Berl). 1987;175(3):399–410. https://doi.org/10.1007/bf00309853 .
doi: 10.1007/bf00309853 pubmed: 3103485
Enders AC, Lopata A. Implantation in the marmoset monkey: expansion of the early implantation site. Anat Rec. 1999;256(3):279–99. https://doi.org/10.1002/(SICI)1097-0185(19991101)256:3%3c279::AID-AR7%3e3.0.CO;2-O .
doi: 10.1002/(SICI)1097-0185(19991101)256:3<279::AID-AR7>3.0.CO;2-O pubmed: 10521786
Harkness LM, Rodger M, Baird DT. Morphological and molecular characteristics of living human fetuses between Carnegie stages 7 and 23: ultrasound scanning and direct measurements. Hum Reprod Update. 1997;3(1):25–33. https://doi.org/10.1093/humupd/3.1.25 .
doi: 10.1093/humupd/3.1.25 pubmed: 9193936
Dickey RP, Gasser RF. Ultrasound evidence for variability in the size and development of normal human embryos before the tenth post-insemination week after assisted reproductive technologies. Hum Reprod. 1993;8(2):331–7. https://doi.org/10.1093/oxfordjournals.humrep.a138046 .
doi: 10.1093/oxfordjournals.humrep.a138046 pubmed: 8473443
Verwoerd-Dikkeboom CM, Koning AHJ, van der Spek PJ, Exalto N, Steegers EAP. Embryonic staging using a 3D virtual reality system. Hum Reprod. 2008;23(7):1479–84. https://doi.org/10.1093/humrep/den023,p.18296447 .
doi: 10.1093/humrep/den023,p.18296447 pubmed: 18296447
Blaas HGK. The examination of the embryo and early fetus: how and by whom? Ultrasound Obstet Gynecol. 1999;14(3):153–8. https://doi.org/10.1046/j.1469-0705.1999.14030153.x .
doi: 10.1046/j.1469-0705.1999.14030153.x pubmed: 10550871
Branum AM, Ahrens KA. Trends in timing of pregnancy awareness among US women. Matern Child Health J. 2017;21(4):715–26. https://doi.org/10.1007/s10995-016-2155-1 .
doi: 10.1007/s10995-016-2155-1 pubmed: 27449777 pmcid: 5269518
Wilcox AJ, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94. https://doi.org/10.1056/NEJM198807283190401 .
doi: 10.1056/NEJM198807283190401 pubmed: 3393170
Stephenson MD, Awartani KA, Robinson WP. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod. 2002;17(2):446–51. https://doi.org/10.1093/humrep/17.2.446 .
doi: 10.1093/humrep/17.2.446 pubmed: 11821293
Hikishima K, et al. Atlas of the developing brain of the marmoset monkey constructed using magnetic resonance histology. Neuroscience. 2013;230:102–13. https://doi.org/10.1016/J.NEUROSCIENCE.2012.09.053 .
doi: 10.1016/J.NEUROSCIENCE.2012.09.053 pubmed: 23047019
Sawada K, Hikishima K, Murayama AY, Okano HJ, Sasaki E, Okano H. Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging. Neuroscience. 2014;257:158–74. https://doi.org/10.1016/J.NEUROSCIENCE.2013.10.067 .
doi: 10.1016/J.NEUROSCIENCE.2013.10.067 pubmed: 24220690
Boroviak T, et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev Cell. 2015;35(3):366–82. https://doi.org/10.1016/j.devcel.2015.10.011 .
doi: 10.1016/j.devcel.2015.10.011 pubmed: 26555056 pmcid: 4643313
Renfree MB, Fenelon JC. The enigma of embryonic diapause. Development. 2017;144(18):3199–210. https://doi.org/10.1242/dev.148213 .
doi: 10.1242/dev.148213 pubmed: 28928280
Phillips IR. The embryology of the common marmoset (Callithrix jacchus). Adv Anat Embryol Cell Biol. 1976;52(5):3–47.
pubmed: 827927
O’Rahilly R, Müller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010;192(2):73–84. https://doi.org/10.1159/000289817,p.20185898 .
doi: 10.1159/000289817,p.20185898 pubmed: 20185898
Huang H, et al. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci. 2009;29(13):4263–73. https://doi.org/10.1523/JNEUROSCI.2769-08.2009 .
doi: 10.1523/JNEUROSCI.2769-08.2009 pubmed: 19339620 pmcid: 2721010
Tezuka N, Sato S, Kanasugi H, Hiroi M. Embryonic heart rates: development in early first trimester and clinical evaluation. Gynecol Obstet Invest. 1991;32(4):210–2. https://doi.org/10.1159/000293033 .
doi: 10.1159/000293033 pubmed: 1778511
de Bakker BS. An interactive three-dimensional digital atlas and quantitative database of human development. Science. 2016;354(6315):aag0053. https://doi.org/10.1126/science.aag0053 .
doi: 10.1126/science.aag0053 pubmed: 27884980
van Vuuren SH, et al. Size and volume charts of fetal kidney, renal pelvis and adrenal gland. Ultrasound Obstet Gynecol. 2012;40(6):659–64. https://doi.org/10.1002/uog.11169 .
doi: 10.1002/uog.11169 pubmed: 22581671
Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997;18(3):378–403. https://doi.org/10.1210/edrv.18.3.0304 .
doi: 10.1210/edrv.18.3.0304 pubmed: 9183569
Chollet F. Keras: the Python deep learning API. GitHub. 2015. https://github.com/keras-team/keras . Accessed 11 Aug 2020.‬‬
Oerke A-K, Einspanier A, Hodges JK. Detection of pregnancy and monitoring patterns of uterine and fetal growth in the marmoset monkey (Callithrix jacchus) by real-time ultrasonography. Am J Primatol. 1995;36(1):1–13. https://doi.org/10.1002/ajp.1350360102 .
doi: 10.1002/ajp.1350360102 pubmed: 31924086

Auteurs

Rohan R Soman (RR)

Tri-Institutional MD-PhD Program, Weill Cornell Medical College, New York, NY, USA.
Laboratory of Synthetic Embryology, Rockefeller University, New York, NY, USA.

Margaret M Fabiszak (MM)

Tri-Institutional MD-PhD Program, Weill Cornell Medical College, New York, NY, USA.
Laboratory of Neural Systems, Rockefeller University, New York, NY, USA.

Michael McPhee (M)

Laboratory of Neural Systems, Rockefeller University, New York, NY, USA.

Peter Schade (P)

Laboratory of Neural Systems, Rockefeller University, New York, NY, USA.

Winrich Freiwald (W)

Laboratory of Neural Systems, Rockefeller University, New York, NY, USA.

Ali H Brivanlou (AH)

Laboratory of Synthetic Embryology, Rockefeller University, New York, NY, USA. brvnlou@rockefeller.edu.

Classifications MeSH