Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
08 Mar 2024
Historique:
medline: 6 3 2024
pubmed: 6 3 2024
entrez: 6 3 2024
Statut: ppublish

Résumé

Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8

Identifiants

pubmed: 38446885
doi: 10.1126/sciadv.adk2298
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eadk2298

Auteurs

Sébastien This (S)

Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.
Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
Department of Microbiology and Immunology, Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.

Santiago Costantino (S)

Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.
Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.

Heather J Melichar (HJ)

Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.
Department of Microbiology and Immunology, Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
Département de Médecine, Université de Montréal, Montréal, Québec, Canada.

Classifications MeSH