Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
06 Mar 2024
Historique:
received: 04 06 2023
accepted: 23 02 2024
medline: 7 3 2024
pubmed: 7 3 2024
entrez: 6 3 2024
Statut: epublish

Résumé

Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO

Identifiants

pubmed: 38448464
doi: 10.1038/s41467-024-46388-4
pii: 10.1038/s41467-024-46388-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2045

Subventions

Organisme : King Abdullah University of Science and Technology (KAUST)
ID : BAS/1/1403

Informations de copyright

© 2024. The Author(s).

Références

Zhu, Y. et al. Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nat. Commun. 11, 1–11 (2020).
doi: 10.1038/s41467-020-19438-w
Zhu, Y. et al. Inverse iron oxide/metal catalysts from galvanic replacement. Nat. Commun. 11, 1–7 (2020).
doi: 10.1038/s41467-020-16830-4
Wang, X., Shi, H. & Szanyi, J. Controlling selectivities in CO2 reduction through mechanistic understanding. Nat. Commun. 8, 1–6 (2017).
Graciani, J. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO
doi: 10.1126/science.1253057
Sehested, J. Industrial and scientific directions of methanol catalyst development. J. Catal. 371, 368–375 (2019).
doi: 10.1016/j.jcat.2019.02.002
Bonura, G., Cordaro, M., Cannilla, C., Arena, F. & Frusteri, F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B Environ. 152–153, 152–161 (2014).
doi: 10.1016/j.apcatb.2014.01.035
Kuld, S. et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science (80−.). 352, 969–974 (2016).
doi: 10.1126/science.aaf0718
Martin, O. et al. Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew. Chemie Int. Ed. 55, 11031–11036 (2016).
doi: 10.1002/anie.201603204
Beck, A. et al. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 2021 46 4, 488–497 (2021).
Prieto, G., Zečević, J., Friedrich, H., De Jong, K. P. & De Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2012 121 12, 34–39 (2012).
Martin, O. & Pérez-Ramírez, J. New and revisited insights into the promotion of methanol synthesis catalysts by CO
doi: 10.1039/c3cy00573a
Bavykina, A. et al. Turning a methanation Co catalyst into an In–Co methanol producer. ACS Catal. 9, 6910–6918 (2019).
doi: 10.1021/acscatal.9b01638
Frei, M. S. et al. Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nat. Commun. 2021 121 12, 1–9 (2021).
Rungtaweevoranit, B. et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 16, 7645–7649 (2016).
pubmed: 27960445 doi: 10.1021/acs.nanolett.6b03637
Jiang, H. L. et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 131, 11302–11303 (2009).
pubmed: 19637919 doi: 10.1021/ja9047653
Jiang, H. L., Akita, T., Ishida, T., Haruta, M. & Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 133, 1304–1306 (2011).
pubmed: 21214205 doi: 10.1021/ja1099006
Zhang, J. et al. Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO2Hydrogenation. J. Am. Chem. Soc. 143, 8829–8837 (2021).
pubmed: 34096297 doi: 10.1021/jacs.1c03283
An, B. et al. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO
pubmed: 28209054 doi: 10.1021/jacs.7b00058
Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).
pubmed: 26268796 doi: 10.1021/acs.jpclett.5b01135
Zhang, C., Han, C., Sholl, D. S. & Schmidt, J. R. Computational characterization of defects in metal-organic frameworks: spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett. 7, 459–464 (2016).
pubmed: 26771275 doi: 10.1021/acs.jpclett.5b02683
Ramos-Fernandez, E. V., Redondo-Murcia, A., Grau-Atienza, A., Sepúlveda-Escribano, A. & Narciso, J. Clean production of Zeolitic Imidazolate Framework 8 using Zamak residues as metal precursor and substrate. J. Clean. Prod. 260, 121081 (2020).
doi: 10.1016/j.jclepro.2020.121081
Li, M. et al. Thermal stability of size-selected copper nanoparticles: Effect of size, support and CO2 hydrogenation atmosphere. Appl. Surf. Sci. 510, 145439 (2020).
doi: 10.1016/j.apsusc.2020.145439
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).
doi: 10.1515/pac-2014-1117
Ta, D. N. et al. Preparation of nano-ZIF-8 in methanol with high yield. Can. J. Chem. Eng. 96, 1518–1531 (2018).
doi: 10.1002/cjce.23155
Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Murali, R. S. & Matsuura, T. The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Adv. 4, 52530–52541 (2014).
doi: 10.1039/C4RA08460H
Jamil, N. et al. Green one-pot synthesis and characterisation of hybrid reduced graphene oxide/zeolitic imidazole framework-8 (rGO/ZIF-8.J. Iran. Chem. Soc. 18, 363–373 (2021).
doi: 10.1007/s13738-020-02032-8
Yue, B., Li, Q., Iwai, H., Kako, T. & Ye, J. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 12, 34401–34408 (2011).
doi: 10.1088/1468-6996/12/3/034401
Ramos-Fernández, E. V., Ferreira, A. F. P., Sepúlveda-Escribano, A., Kapteijn, F. & Rodríguez-Reinoso, F. Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. J. Catal. 258, 52–60 (2008).
doi: 10.1016/j.jcat.2008.05.025
Zhen, S. Y. et al. Metal–organic framework derived hollow porous CuO–CuCo2O4 dodecahedrons as a cathode catalyst for Li–O2 batteries. RSC Adv. 9, 16288–16295 (2019).
pubmed: 35516381 pmcid: 9064447 doi: 10.1039/C9RA02860A
La Rosa-Toro, A. et al. Preparation and characterization of copper-doped cobalt oxide electrodes. J. Phys. Chem. B 110, 24021–24029 (2006).
pubmed: 17125373 doi: 10.1021/jp0642903
Wang, W., Qu, Z., Song, L. & Fu, Q. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction. J. Energy Chem. 40, 22–30 (2020).
doi: 10.1016/j.jechem.2019.03.001
Liao, F. et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew. Chemie Int. Ed. 50, 2162–2165 (2011).
doi: 10.1002/anie.201007108
Li, D., Wang, G., Cheng, L., Wang, C. & Mei, X. Engineering the self-assembly induced emission of copper nanoclusters as 3D nanomaterials with mesoporous sphere structures by the crosslinking of Ce3. ACS Omega 3, 14755–14765 (2018).
pubmed: 31458150 pmcid: 6643740 doi: 10.1021/acsomega.8b02204
Frei, E. et al. Cu−Zn alloy formation as unfavored state for efficient methanol catalysts. ChemCatChem 12, 4029–4033 (2020).
doi: 10.1002/cctc.202000777
Newton, M. A. et al. On the mechanism underlying the direct conversion of methane to methanol by copper hosted in zeolites; braiding Cu K-edge XANES and reactivity studies. J. Am. Chem. Soc. 140, 10090–10093 (2018).
pubmed: 30071725 doi: 10.1021/jacs.8b05139
Nian, J. N., Chen, S. A., Tsai, C. C. & Teng, H. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes. J. Phys. Chem. B 110, 25817–25824 (2006).
pubmed: 17181226 doi: 10.1021/jp064209w
Yuan, L. et al. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 9, 4824–4833 (2019).
doi: 10.1021/acscatal.9b00862
Ma, Q., Buchholz, D. B. & Chang, R. P. H. Local structures of copper-doped ZnO films. Phys. Rev. B - Condens. Matter Mater. Phys. 78, 214429 (2008).
doi: 10.1103/PhysRevB.78.214429
Boada, R. et al. Unraveling the molecular details of the ‘gate opening’ phenomenon in ZIF-8 with X-ray absorption spectroscopy. J. Phys. Chem. C 126, 5935–5943 (2022).
doi: 10.1021/acs.jpcc.2c00373
Dalebout, R. et al. Insight into the nature of the ZnOx promoter during methanol synthesis. ACS Catal. 12, 6628–6639 (2022).
pubmed: 35692251 pmcid: 9171830 doi: 10.1021/acscatal.1c05101
Wang, Y. et al. Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 2019 101 10, 1–10 (2019).
Graaf, G. H., Sijtsema, P. J. J. M., Stamhuis, E. J. & Joosten, G. E. H. Chemical equilibria in methanol synthesis. Chem. Eng. Sci. 41, 2883–2890 (1986).
doi: 10.1016/0009-2509(86)80019-7
Hu, B. et al. Cu@ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO2 hydrogenation to methanol. Catal. Sci. Technol. 9, 2673–2681 (2019).
doi: 10.1039/C8CY02546K
Beebe, T. P., Crowell, J. E. & Yates, J. T. Reaction of methyl chloride with alumina surfaces: a study of the methoxy surface species by transmission infrared spectroscopy. J. Phys. Chem. 92, 1296–1301 (2002).
doi: 10.1021/j100316a056
Fujita, S. I., Usui, M., Ohara, E. & Takezawa, N. Methanol synthesis from carbon dioxide at atmospheric pressure over Cu/ZnO catalyst. Role of methoxide species formed on ZnO support. Catal. Lett. 1992 134 13, 349–358 (1992).
Wang, L. L. & Johnson, D. D. Density functional study of structural trends for late-transition-metal 13-atom clusters. Phys. Rev. B - Condens. Matter Mater. Phys. 75, 235405 (2007).
doi: 10.1103/PhysRevB.75.235405
Fan, Q. Y., Sun, J. J., Wang, F. & Cheng, J. Adsorption-induced liquid-to-solid phase transition of Cu clusters in catalytic dissociation of CO
pubmed: 32902999 doi: 10.1021/acs.jpclett.0c02499
Natesakhawat, S. et al. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal. 2, 1667–1676 (2012).
doi: 10.1021/cs300008g
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).
pubmed: 21817356 doi: 10.1088/0953-8984/21/8/084204
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Lewis, D. W. et al. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 11, 2272–2276 (2009).
doi: 10.1039/b912997a
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
doi: 10.1103/PhysRevB.50.17953
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
doi: 10.1016/0927-0256(96)00008-0
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
pubmed: 10062328 doi: 10.1103/PhysRevLett.77.3865
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
pubmed: 20423165 doi: 10.1063/1.3382344
Pack, J. D ., & Monkhorst, H. J. Special points for Brillonin-zone integrations*. Phys. Rev. B 13, 5188–5192 (1976).
doi: 10.1103/PhysRevB.13.5188
Zhang, W. & Xiao, Y. Mechanism of electrocatalytically active precious metal (Ni, Pd, Pt, and Ru) complexes in the graphene basal plane for ORR applications in novel fuel cells. Energy Fuels 34, 2425–2434 (2020).
doi: 10.1021/acs.energyfuels.9b04036
Ahmad, R. & Singh, A. K. Synergistic core–shell interactions enable ultra-low overpotentials for enhanced CO 2 electro-reduction activity. J. Mater. Chem. A 6, 21120–21130 (2018).
doi: 10.1039/C8TA06587J

Auteurs

Vijay K Velisoju (VK)

Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Jose L Cerrillo (JL)

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Rafia Ahmad (R)

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Hend Omar Mohamed (HO)

Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Yerrayya Attada (Y)

Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Qingpeng Cheng (Q)

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia.

Xueli Yao (X)

Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Lirong Zheng (L)

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

Osama Shekhah (O)

King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia.

Selvedin Telalovic (S)

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Javier Narciso (J)

Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain.

Luigi Cavallo (L)

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Yu Han (Y)

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia.

Mohamed Eddaoudi (M)

King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia.

Enrique V Ramos-Fernández (EV)

Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain.
Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), KAUST, Thuwal, Saudi Arabia.

Pedro Castaño (P)

Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. pedro.castano@kaust.edu.sa.
Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, Saudi Arabia. pedro.castano@kaust.edu.sa.

Classifications MeSH