Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome.


Journal

Human genomics
ISSN: 1479-7364
Titre abrégé: Hum Genomics
Pays: England
ID NLM: 101202210

Informations de publication

Date de publication:
06 Mar 2024
Historique:
received: 26 01 2024
accepted: 29 02 2024
medline: 7 3 2024
pubmed: 7 3 2024
entrez: 6 3 2024
Statut: epublish

Résumé

Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.

Sections du résumé

BACKGROUND/OBJECTIVES OBJECTIVE
Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos.
RESULTS RESULTS
The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function.
CONCLUSION CONCLUSIONS
In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.

Identifiants

pubmed: 38448978
doi: 10.1186/s40246-024-00593-w
pii: 10.1186/s40246-024-00593-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 469177153
Organisme : Deutsche Forschungsgemeinschaft
ID : 397519724

Informations de copyright

© 2024. The Author(s).

Références

Alestrom P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S. Zebrafish: housing and husbandry recommendations. Lab Anim. 2020;54:213–24.
pubmed: 31510859 doi: 10.1177/0023677219869037
Chalamalasetty RB, Garriock RJ, Dunty WC Jr, Kennedy MW, Jailwala P, Si H, Yamaguchi TP. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development. 2014;141:4285–97.
pubmed: 25371364 pmcid: 4302905 doi: 10.1242/dev.110908
Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y, Yang T, Lee B. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res. 2013;28:649–59.
pubmed: 22991339 doi: 10.1002/jbmr.1770
Chen W, Liu J, Yuan D, Zuo Y, Liu Z, Liu S, Zhu Q, Qiu G, Huang S, Giampietro PF, et al. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget. 2016;7:57430–41.
pubmed: 27437870 pmcid: 5302999 doi: 10.18632/oncotarget.10619
Cheng J, Novati G, Pan J, Bycroft C, Zemgulyte A, Applebaum T, Pritzel A, Wong LH, Zielinski M, Sargeant T, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381:eadg7492.
pubmed: 37733863 doi: 10.1126/science.adg7492
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci. 2015;72:2989–3008.
pubmed: 25833128 doi: 10.1007/s00018-015-1897-z
Drutman SB, Haerynck F, Zhong FL, Hum D, Hernandez NJ, Belkaya S, Rapaport F, de Jong SJ, Creytens D, Tavernier SJ, et al. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc Natl Acad Sci U S A. 2019;116:19055–63.
pubmed: 31484767 pmcid: 6754618 doi: 10.1073/pnas.1906184116
Fior R, Maxwell AA, Ma TP, Vezzaro A, Moens CB, Amacher SL, Lewis J, Saude L. The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1. Development. 2012;139:4656–65.
pubmed: 23172917 pmcid: 3509727 doi: 10.1242/dev.078923
Gruber C, Martin-Fernandez M, Ailal F, Qiu X, Taft J, Altman J, Rosain J, Buta S, Bousfiha A, Casanova JL, et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med. 2020. https://doi.org/10.1084/jem.20192319 .
doi: 10.1084/jem.20192319 pubmed: 32092142 pmcid: 7201920
Holtgrewe M, Stolpe O, Nieminen M, Mundlos S, Knaus A, Kornak U, Seelow D, Segebrecht L, Spielmann M, Fischer-Zirnsak B, et al. VarFish: comprehensive DNA variant analysis for diagnostics and research. Nucleic Acids Res. 2020;48:W162–9.
pubmed: 32338743 pmcid: 7319464 doi: 10.1093/nar/gkaa241
Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85.
pubmed: 27666373 pmcid: 5065685 doi: 10.1016/j.ajhg.2016.08.016
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176(535–548):e524.
Kimelman D. Tales of tails (and trunks): forming the posterior body in vertebrate embryos. Curr Top Dev Biol. 2016;116:517–36.
pubmed: 26970638 pmcid: 4883064 doi: 10.1016/bs.ctdb.2015.12.008
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.
pubmed: 8589427 doi: 10.1002/aja.1002030302
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.
pubmed: 24487276 pmcid: 3992975 doi: 10.1038/ng.2892
Kispert A, Herrmann BG. Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev Biol. 1994;161:179–93.
pubmed: 8293872 doi: 10.1006/dbio.1994.1019
Latimer AJ, Appel B. Notch signaling regulates midline cell specification and proliferation in zebrafish. Dev Biol. 2006;298:392–402.
pubmed: 16876779 doi: 10.1016/j.ydbio.2006.05.039
Lausch E, Hermanns P, Farin HF, Alanay Y, Unger S, Nikkel S, Steinwender C, Scherer G, Spranger J, Zabel B, et al. TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am J Hum Genet. 2008;83:649–55.
pubmed: 19068278 pmcid: 2668032 doi: 10.1016/j.ajhg.2008.10.011
Lewis J, Hanisch A, Holder M. Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol. 2009;8:44.
pubmed: 19486506 pmcid: 2688916 doi: 10.1186/jbiol145
Liao BK, Jorg DJ, Oates AC. Faster embryonic segmentation through elevated Delta-Notch signalling. Nat Commun. 2016;7:11861.
pubmed: 27302627 pmcid: 4912627 doi: 10.1038/ncomms11861
Liao BK, Oates AC. Delta-Notch signalling in segmentation. Arthropod Struct Dev. 2017;46:429–47.
pubmed: 27888167 pmcid: 5446262 doi: 10.1016/j.asd.2016.11.007
Liu C, Nakamura E, Knezevic V, Hunter S, Thompson K, Mackem S. A role for the mesenchymal T-box gene Brachyury in AER formation during limb development. Development. 2003;130:1327–37.
pubmed: 12588849 doi: 10.1242/dev.00354
McMillen P, Holley SA. The tissue mechanics of vertebrate body elongation and segmentation. Curr Opin Genet Dev. 2015;32:106–11.
pubmed: 25796079 pmcid: 4470730 doi: 10.1016/j.gde.2015.02.005
Morrow ZT, Maxwell AM, Hoshijima K, Talbot JC, Grunwald DJ, Amacher SL. tbx6l and tbx16 are redundantly required for posterior paraxial mesoderm formation during zebrafish embryogenesis. Dev Dyn. 2017;246:759–69.
pubmed: 28691257 pmcid: 5744594 doi: 10.1002/dvdy.24547
Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, Nishimura G, Robertson S, Sangiorgi L, Savarirayan R, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179:2393–419.
pubmed: 31633310 doi: 10.1002/ajmg.a.61366
Ninov N, Borius M, Stainier DY. Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development. 2012;139:1557–67.
pubmed: 22492351 pmcid: 3317964 doi: 10.1242/dev.076000
Odenthal J, Haffter P, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, et al. Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development. 1996;123:103–15.
pubmed: 9007233 doi: 10.1242/dev.123.1.103
Pan Y, Liu Z, Shen J, Kopan R. Notch1 and 2 cooperate in limb ectoderm to receive an early Jagged2 signal regulating interdigital apoptosis. Dev Biol. 2005;286:472–82.
pubmed: 16169548 doi: 10.1016/j.ydbio.2005.08.037
Postma AV, Alders M, Sylva M, Bilardo CM, Pajkrt E, van Rijn RR, Schulte-Merker S, Bulk S, Stefanovic S, Ilgun A, et al. Mutations in the T (brachyury) gene cause a novel syndrome consisting of sacral agenesis, abnormal ossification of the vertebral bodies and a persistent notochordal canal. J Med Genet. 2014;51:90–7.
pubmed: 24253444 doi: 10.1136/jmedgenet-2013-102001
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.
pubmed: 30371827 doi: 10.1093/nar/gky1016
Row RH, Tsotras SR, Goto H, Martin BL. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development. 2016;143:244–54.
pubmed: 26674311 pmcid: 4725346
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
pubmed: 22743772 doi: 10.1038/nmeth.2019
Searle AG. Curtailed, a new dominant T-allele in the house mouse. Genet Res. 1966;7:86–95.
pubmed: 5906493 doi: 10.1017/S0016672300009496
Seelow D, Schuelke M, Hildebrandt F, Nurnberg P. HomozygosityMapper–an interactive approach to homozygosity mapping. Nucleic Acids Res. 2009;37:W593-599.
pubmed: 19465395 pmcid: 2703915 doi: 10.1093/nar/gkp369
Simsek MF, Chandel AS, Saparov D, Zinani OQH, Clason N, Ozbudak EM. Periodic inhibition of Erk activity drives sequential somite segmentation. Nature. 2023;613:153–9.
pubmed: 36517597 doi: 10.1038/s41586-022-05527-x
Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, Chapman DL, Tasic V, Shishko A, Brown MA, et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet. 2013;22:1625–31.
pubmed: 23335591 doi: 10.1093/hmg/ddt012
Stemple DL. Structure and function of the notochord: an essential organ for chordate development. Development. 2005;132:2503–12.
pubmed: 15890825 doi: 10.1242/dev.01812
Stemple DL, Solnica-Krezel L, Zwartkruis F, Neuhauss SC, Schier AF, Malicki J, Stainier DY, Abdelilah S, Rangini Z, Mountcastle-Shah E, et al. Mutations affecting development of the notochord in zebrafish. Development. 1996;123:117–28.
pubmed: 9007234 doi: 10.1242/dev.123.1.117
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3:59–69.
pubmed: 18193022 doi: 10.1038/nprot.2007.514
Tian Y, Xu Y, Fu Q, Chang M, Wang Y, Shang X, Wan C, Marymont JV, Dong Y. Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1. Mol Cell Endocrinol. 2015;403:30–8.
pubmed: 25596548 pmcid: 4337804 doi: 10.1016/j.mce.2015.01.015
Unger S, Ferreira CR, Mortier GR, Ali H, Bertola DR, Calder A, Cohn DH, Cormier-Daire V, Girisha KM, Hall C, et al. Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. 2023;191:1164–209.
pubmed: 36779427 doi: 10.1002/ajmg.a.63132
van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development. 1996;123:153–64.
pubmed: 9007237 doi: 10.1242/dev.123.1.153
Wehn AK, Chapman DL. Tbx18 and Tbx15 null-like phenotypes in mouse embryos expressing Tbx6 in somitic and lateral plate mesoderm. Dev Biol. 2010;347:404–13.
pubmed: 20832395 doi: 10.1016/j.ydbio.2010.09.001
Westerfield M. The Zebrafish book: a guide for the laboratory use of Zebrafish (Danio Rerio). Eugene: University of Oregon Press; 2000.
Wittler L, Shin EH, Grote P, Kispert A, Beckers A, Gossler A, Werber M, Herrmann BG. Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6. EMBO Rep. 2007;8:784–9.
pubmed: 17668009 pmcid: 1978083 doi: 10.1038/sj.embor.7401030
Yabe T, Takada S. Mesogenin causes embryonic mesoderm progenitors to differentiate during development of zebrafish tail somites. Dev Biol. 2012;370:213–22.
pubmed: 22890044 doi: 10.1016/j.ydbio.2012.07.029
Yoon JK, Wold B. The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev. 2000;14:3204–14.
pubmed: 11124811 pmcid: 317151 doi: 10.1101/gad.850000

Auteurs

Asuman Koparir (A)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.

Caroline Lekszas (C)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.

Kemal Keseroglu (K)

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Thalia Rose (T)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.

Lena Rappl (L)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.

Aboulfazl Rad (A)

Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, Iran.

Reza Maroofian (R)

Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.

Nakul Narendran (N)

University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Atefeh Hasanzadeh (A)

Cellular and Molecular Research Centre, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran.

Ehsan Ghayoor Karimiani (EG)

Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran.

Felix Boschann (F)

Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.

Uwe Kornak (U)

Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.

Eva Klopocki (E)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.

Ertuğrul M Özbudak (EM)

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Barbara Vona (B)

Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.

Thomas Haaf (T)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany.

Daniel Liedtke (D)

Institute of Human Genetics, Julius-Maximilians-Universität Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany. Daniel.liedtke@uni-wuerzburg.de.

Classifications MeSH