The association between coronary artery calcification and vectorcardiography in mechanically ventilated COVID-19 patients: the Maastricht Intensive Care COVID cohort.

COVID-19 Intensive care unit Vascular calcification Vectorcardiography

Journal

Intensive care medicine experimental
ISSN: 2197-425X
Titre abrégé: Intensive Care Med Exp
Pays: Germany
ID NLM: 101645149

Informations de publication

Date de publication:
07 Mar 2024
Historique:
received: 19 12 2023
accepted: 29 02 2024
medline: 7 3 2024
pubmed: 7 3 2024
entrez: 7 3 2024
Statut: epublish

Résumé

Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography (CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels. In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], p = 0.012), which decreased during admission (- 0.27 µVs per day [- 0.43; - 0.11], p = 0.001). Patients with the highest CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT (0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002). Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification and prognostication of patients with critical illness.

Sections du résumé

BACKGROUND BACKGROUND
Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP).
METHODS METHODS
Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography (CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels.
RESULTS RESULTS
In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], p = 0.012), which decreased during admission (- 0.27 µVs per day [- 0.43; - 0.11], p = 0.001). Patients with the highest CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT (0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002).
CONCLUSION CONCLUSIONS
Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification and prognostication of patients with critical illness.

Identifiants

pubmed: 38451350
doi: 10.1186/s40635-024-00611-0
pii: 10.1186/s40635-024-00611-0
doi:

Types de publication

Journal Article

Langues

eng

Pagination

26

Informations de copyright

© 2024. The Author(s).

Références

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W et al (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382:727–733
pubmed: 31978945 pmcid: 7092803 doi: 10.1056/NEJMoa2001017
Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology 5:802–810
pubmed: 32211816 pmcid: 7097841 doi: 10.1001/jamacardio.2020.0950
Ghossein MA, Driessen RGH, van Rosmalen F, Sels JEM, Delnoij T, Geyik Z, Mingels AMA, van Stipdonk AMW, Prinzen FW, Ghossein-Doha C, van Kuijk SMJ, van der Horst ICC, Vernooy K, van Bussel BCT (2022) Serial assessment of myocardial injury markers in mechanically ventilated patients with SARS-CoV-2 (from the Prospective MaastrICCht Cohort). Am J Cardiol 170:118–127
pubmed: 35221103 pmcid: 8867902 doi: 10.1016/j.amjcard.2022.01.030
Calvo-Fernandez A, Izquierdo A, Subirana I, Farre N, Vila J, Duran X, Garcia-Guimaraes M, Valdivielso S, Cabero P, Soler C, Garcia-Ribas C, Rodriguez C, Llagostera M, Mojon D, Vicente M, Sole-Gonzalez E, Sanchez-Carpintero A, Tevar C, Marrugat J, Vaquerizo B (2021) Markers of myocardial injury in the prediction of short-term COVID-19 prognosis. Rev Esp Cardiol (Engl Ed) 74:576–583
pubmed: 33153955
Battaglini D, Lopes-Pacheco M, Castro-Faria-Neto HC, Pelosi P, Rocco PRM (2022) Laboratory biomarkers for diagnosis and prognosis in COVID-19. Front Immunol 13:857573
pubmed: 35572561 pmcid: 9091347 doi: 10.3389/fimmu.2022.857573
Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J (2021) COVID-19 and cardiovascular disease: from bench to bedside. Circ Res 128:1214–1236
pubmed: 33856918 pmcid: 8048382 doi: 10.1161/CIRCRESAHA.121.317997
Cipriani A, Capone F, Donato F, Molinari L, Ceccato D, Saller A, Previato L, Pesavento R, Sarais C, Fioretto P, Iliceto S, Gregori D, Avogaro A, Vettor R (2021) Cardiac injury and mortality in patients with Coronavirus disease 2019 (COVID-19): insights from a mediation analysis. Intern Emerg Med 16:419–427
pubmed: 32984929 doi: 10.1007/s11739-020-02495-w
Zinellu A, Sotgia S, Fois AG, Mangoni AA (2021) Serum CK-MB, COVID-19 severity and mortality: an updated systematic review and meta-analysis with meta-regression. Adv Med Sci 66:304–314
pubmed: 34256241 pmcid: 8260505 doi: 10.1016/j.advms.2021.07.001
Martens B, Driessen RGH, Brandts L, Hoitinga P, van Veen F, Driessen M, Weberndorfer V, Kietselaer B, Ghossein-Doha C, Gietema HA, Vernooy K, van der Horst ICC, Wildberger JE, van Bussel BCT, Mihl C, Maastr IC, (2022) Coronary Artery Calcifications Are Associated With More Severe Multiorgan Failure in Patients With Severe Coronavirus Disease 2019 Infection: Longitudinal Results of the Maastricht Intensive Care COVID Cohort. J Thorac Imaging
Nai Fovino L, Cademartiri F, Tarantini G (2020) Subclinical coronary artery disease in COVID-19 patients. Eur Heart J Cardiovasc Imaging 21:1055–1056
pubmed: 32671381 doi: 10.1093/ehjci/jeaa202
Zimmermann GS, Fingerle AA, Muller-Leisse C, Gassert F, von Schacky CE, Ibrahim T, Laugwitz KL, Geisler F, Spinner C, Haller B, Makowski MR, Nadjiri J (2020) Coronary calcium scoring assessed on native screening chest CT imaging as predictor for outcome in COVID-19: An analysis of a hospitalized German cohort. PLoS ONE 15:e0244707
pubmed: 33378410 pmcid: 7773182 doi: 10.1371/journal.pone.0244707
Dillinger JG, Benmessaoud FA, Pezel T, Voicu S, Sideris G, Chergui N, Hamzi L, Chauvin A, Leroy P, Gautier JF, Sene D, Henry P, Hospital CRGoL, (2020) Coronary Artery Calcification and Complications in Patients With COVID-19. JACC Cardiovasc Imaging 13:2468–2470
pubmed: 33153535 pmcid: 7605736 doi: 10.1016/j.jcmg.2020.07.004
Moey MYY, Sengodan PM, Shah N, McCallen JD, Eboh O, Nekkanti R, Carabello BA, Naniwadekar AR (2020) Electrocardiographic changes and arrhythmias in hospitalized patients with COVID-19. Circ Arrhythm Electrophysiol 13:e009023
pubmed: 32931707 pmcid: 7566299 doi: 10.1161/CIRCEP.120.009023
Bergamaschi L, D’Angelo EC, Paolisso P, Toniolo S, Fabrizio M, Angeli F, Donati F, Magnani I, Rinaldi A, Bartoli L, Chiti C, Biffi M, Pizzi C, Viale P, Galie N (2021) The value of ECG changes in risk stratification of COVID-19 patients. Ann Noninvasive Electrocardiol 26:e12815
pubmed: 33512742 pmcid: 7994985 doi: 10.1111/anec.12815
Tereshchenko LG, Pourbemany J, Haq KT, Patel H, Hyde J, Quadri S, Ibrahim H, Tongpoon A, Pourbemany R, Khan A (2023) An electrophysiological substrate of COVID-19. J Electrocardiol 79:61–65
pubmed: 36963283 pmcid: 10027233 doi: 10.1016/j.jelectrocard.2023.03.010
Engels EB, Alshehri S, van Deursen CJ, Wecke L, Bergfeldt L, Vernooy K, Prinzen FW (2015) The synthesized vectorcardiogram resembles the measured vectorcardiogram in patients with dyssynchronous heart failure. J Electrocardiol 48:586–592
pubmed: 25900820 doi: 10.1016/j.jelectrocard.2015.04.001
van Deursen CJ, Vernooy K, Dudink E, Bergfeldt L, Crijns HJ, Prinzen FW, Wecke L (2015) Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol 48:45–52
pubmed: 25453196 doi: 10.1016/j.jelectrocard.2014.10.003
Emerek K, Friedman DJ, Sorensen PL, Hansen SM, Larsen JM, Risum N, Thogersen AM, Graff C, Kisslo J, Sogaard P, Atwater BD (2019) Vectorcardiographic QRS area is associated with long-term outcome after cardiac resynchronization therapy. Heart Rhythm 16:213–219
pubmed: 30170227 doi: 10.1016/j.hrthm.2018.08.028
van Stipdonk AMW, Ter Horst I, Kloosterman M, Engels EB, Rienstra M, Crijns H, Vos MA, van Gelder IC, Prinzen FW, Meine M, Maass AH, Vernooy K (2018) QRS area is a strong determinant of outcome in cardiac resynchronization therapy. Circ Arrhythm Electrophysiol 11:e006497
pubmed: 30541356 doi: 10.1161/CIRCEP.118.006497
Tas J, van Gassel RJJ, Heines SJH, Mulder MMG, Heijnen NFL, Acampo-de Jong MJ, Bels JLM, Bennis FC, Koelmann M, Groven RVM, Donkers MA, van Rosmalen F, Hermans BJM, Meex SJ, Mingels A, Bekers O, Savelkoul P, Oude Lashof AML, Wildberger J, Tijssen FH, Buhre W, Sels JEM, Ghossein-Doha C, Driessen RGH, Kubben PL, Janssen MLF, Nicolaes GAF, Strauch U, Geyik Z, Delnoij TSR, Walraven KHM, Stehouwer CD, Verbunt J, Van Mook W, van Santen S, Schnabel RM, Aries MJH, van de Poll MCG, Bergmans D, van der Horst ICC, van Kuijk S, van Bussel BCT (2020) Serial measurements in COVID-19-induced acute respiratory disease to unravel heterogeneity of the disease course: design of the Maastricht Intensive Care COVID cohort (MaastrICCht). BMJ Open 10:e040175
pubmed: 32994259 pmcid: 7526030 doi: 10.1136/bmjopen-2020-040175
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61:344–349
doi: 10.1016/j.jclinepi.2007.11.008
Jairam PM, Gondrie MJ, Grobbee DE, Mali WP, Jacobs PC, van der Graaf Y (2014) Incidental imaging findings from routine chest CT used to identify subjects at high risk of future cardiovascular events. Radiology 272:700–708
pubmed: 24865309 doi: 10.1148/radiol.14132211
Jacobs PC, Prokop M, Oen AL, van der Graaf Y, Grobbee DE, Mali WP (2010) Semiquantitative assessment of cardiovascular disease markers in multislice computed tomography of the chest: interobserver and intraobserver agreements. J Comput Assist Tomogr 34:279–284
pubmed: 20351521 doi: 10.1097/RCT.0b013e3181bbcff6
Newby D, Williams M, Hunter A, Pawade T, Shah A, Flapan A, Forbes J, Hargreaves A, Stephen L, Lewis S (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385:2383–2391
doi: 10.1016/S0140-6736(15)60291-4
Chen L, Vavrenyuk A, Ren JH, Desai P, Bahgat J, Bernstein MA, Ebright MI, Gowda M, Rose S, Fallahi A, Stainken B, Hsi DH (2021) Prognostic value of coronary artery calcification identified by the semi-quantitative weston method in the emergency room or other hospitalized patients. Front Cardiovasc Med 8:684292
pubmed: 34222379 pmcid: 8248783 doi: 10.3389/fcvm.2021.684292
Williams MC, Abbas A, Tirr E, Alam S, Nicol E, Shambrook J, Schmitt M, Hughes GM, Stirrup J, Holloway B, Gopalan D, Deshpande A, Weir-McCall J, Agrawal B, Rodrigues JCL, Brady AJB, Roditi G, Robinson G, Bull R (2021) Reporting incidental coronary, aortic valve and cardiac calcification on non-gated thoracic computed tomography, a consensus statement from the BSCI/BSCCT and BSTI. Br J Radiol 94:20200894
pubmed: 33053316 doi: 10.1259/bjr.20200894
Kors JA, Van Herpen G, Sittig AC, Van Bemmel JH (1990) Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J 11:1083–1092
pubmed: 2292255 doi: 10.1093/oxfordjournals.eurheartj.a059647
Lee W, Yoon YE, Cho S-Y, Hwang I-C, Kim S-H, Lee H, Park HE, Chun EJ, Kim H-K, Choi S-Y, Park SH, Han H-W, Sung J, Jung HO, Cho G-Y, Chang H-J (2021) Sex differences in coronary artery calcium progression: the Korea Initiatives on Coronary Artery Calcification (KOICA) registry. PLoS ONE 16:e0248884
pubmed: 33830992 pmcid: 8031433 doi: 10.1371/journal.pone.0248884
Nakao YM, Miyamoto Y, Higashi M, Noguchi T, Ohishi M, Kubota I, Tsutsui H, Kawasaki T, Furukawa Y, Yoshimura M, Morita H, Nishimura K, Kada A, Goto Y, Okamura T, Tei C, Tomoike H, Naito H, Yasuda S (2018) Sex differences in impact of coronary artery calcification to predict coronary artery disease. Heart 104:1118–1124
pubmed: 29331986 doi: 10.1136/heartjnl-2017-312151
Meijs DAM, van Bussel BCT, Stessel B, Mehagnoul-Schipper J, Hana A, Scheeren CIE, Peters SAE, van Mook W, van der Horst ICC, Marx G, Mesotten D, Ghossein-Doha C, Pi CoDa (2022) Better COVID-19 Intensive Care Unit survival in females, independent of age, disease severity, comorbidities, and treatment. Sci Rep 12:734
pubmed: 35031644 pmcid: 8760268 doi: 10.1038/s41598-021-04531-x
Schiffer V, Janssen E, van Bussel BCT, Jorissen LLM, Tas J, Sels JEM, Bergmans D, Dinh THT, van Kuijk SMJ, Hana A, Mehagnoul-Schipper J, Scheeren CIE, Mesotten D, Stessel B, Marx G, Hof A, Spaanderman MEA, van Mook W, van der Horst ICC, Ghossein-Doha C (2020) The “sex gap” in COVID-19 trials: a scoping review. EClinicalMedicine 29:100652
pubmed: 33283178 doi: 10.1016/j.eclinm.2020.100652
Kannel W (2005) Risk stratification of dyslipidemia: insights from the Framingham Study. Cardiovasc Hematol Agents Med Chem 3:187–193
doi: 10.2174/1568016054368250
He Y, Xie M, Zhao J, Liu X (2020) Clinical characteristics and outcomes of patients with severe COVID-19 and chronic obstructive pulmonary disease (COPD). Med Sci Monit 26:e927212–e927211
pubmed: 32883943 pmcid: 7491229 doi: 10.12659/MSM.927212
Hernández-Garduño E (2020) Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes Res Clin Pract 14:375–379
pubmed: 32536475 pmcid: 7290168 doi: 10.1016/j.orcp.2020.06.001
Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R (2020) Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 323:1574–1581
pubmed: 32250385 pmcid: 7136855 doi: 10.1001/jama.2020.5394
Goldberger AL, Bhargava V, Froelicher V, Covell J (1981) Effect of myocardial infarction on high-frequency QRS potentials. Circulation 64:34–42
pubmed: 7237722 doi: 10.1161/01.CIR.64.1.34
Sederholm M (2014) The origin of monitoring of acute myocardial infarction with continuous vectorcardiography. J Electrocardiol 47:418–424
pubmed: 24878031 doi: 10.1016/j.jelectrocard.2014.04.002
Nelson MR, Daniel KR, Carr JJ, Freedman BI, Prineas RJ, Bowden DW, Herrington DM (2008) Associations between electrocardiographic interval durations and coronary artery calcium scores: the Diabetes Heart Study. Pacing Clin Electrophysiol 31:314–321
pubmed: 18307626 doi: 10.1111/j.1540-8159.2008.00991.x
Nguyen UC, Claridge S, Vernooy K, Engels EB, Razavi R, Rinaldi CA, Chen Z, Prinzen FW (2018) Relationship between vectorcardiographic QRS(area), myocardial scar quantification, and response to cardiac resynchronization therapy. J Electrocardiol 51:457–463
pubmed: 29454649 doi: 10.1016/j.jelectrocard.2018.01.009
Strauss DG, Selvester RH, Lima JA, Arheden H, Miller JM, Gerstenblith G, Marban E, Weiss RG, Tomaselli GF, Wagner GS, Wu KC (2008) ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis. Circ Arrhythm Electrophysiol 1:327–336
pubmed: 19808427 pmcid: 2748944 doi: 10.1161/CIRCEP.108.798660
Guo H, Zhou X, Xu J, Ye Z, Guo L, Huang R (2022) QRS score: a simple marker to quantify the extent of myocardial scarring in patients with chronic total arterial occlusion. Chronic Dis Transl Med 8:51–58
pubmed: 35620157 pmcid: 9128557
Strauss DG, Selvester RH (2009) The QRS complex—a biomarker that “images” the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction. J Electrocardiol 42:85–96
pubmed: 18790501 doi: 10.1016/j.jelectrocard.2008.07.011
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R (2022) CAD-RADS 2.0—2022 coronary artery disease-reporting and data system: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 16:536–557
pubmed: 35864070 doi: 10.1016/j.jcct.2022.07.002
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Executive Group on behalf of the Joint European Society of Cardiology /American College of Cardiology /American Heart Association /World Heart Federation Task Force for the Universal Definition of Myocardial I, (2018) Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol 72: 2231–2264
Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimsky P, Group ESCSD, (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39: 119–177
Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, Coats AJS, Metra M, Mebazaa A, Ruschitzka F, Lainscak M, Filippatos G, Seferovic PM, Meijers WC, Bayes-Genis A, Mueller T, Richards M, Januzzi JL, Jr., Heart Failure Association of the European Society of C, (2019) Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail 21: 715–731
Laufer EM, Mingels AM, Winkens MH, Joosen IA, Schellings MW, Leiner T, Wildberger JE, Narula J, Van Dieijen-Visser MP, Hofstra L (2010) The extent of coronary atherosclerosis is associated with increasing circulating levels of high sensitive cardiac troponin T. Arterioscler Thromb Vasc Biol 30:1269–1275
pubmed: 20299689 doi: 10.1161/ATVBAHA.109.200394
Mingels AM, Joosen IA, Versteylen MO, Laufer EM, Winkens MH, Wildberger JE, Van Dieijen-Visser MP, Hofstra L (2012) High-sensitivity cardiac troponin T: risk stratification tool in patients with symptoms of chest discomfort. PLoS ONE 7:e35059
pubmed: 22558116 pmcid: 3338816 doi: 10.1371/journal.pone.0035059
Altintas S, Cardinaels EP, Versteylen MO, Joosen IA, Seifert M, Wildberger JE, Crijns HJ, Nelemans PJ, Van Dieijen-Visser MP, Mingels AM, Das M, Kietselaer BL (2016) Unstable coronary plaque characteristics are associated with high-sensitivity cardiac troponin T and N-terminal Pro-Brain Natriuretic Peptide. J Cardiovasc Comput Tomogr 10:82–88
pubmed: 26481512 doi: 10.1016/j.jcct.2015.10.001
Kitagawa N, Okada H, Tanaka M, Hashimoto Y, Kimura T, Tomiyasu K, Nakano K, Hasegawa G, Nakamura N, Fukui M (2015) High-sensitivity cardiac troponin T is associated with coronary artery calcification. J Cardiovasc Comput Tomogr 9:209–214
pubmed: 25843242 doi: 10.1016/j.jcct.2015.01.015

Auteurs

Eda Aydeniz (E)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands. eda.aydeniz@mumc.nl.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands. eda.aydeniz@mumc.nl.

Frank van Rosmalen (F)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.

Jip de Kok (J)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.

Bibi Martens (B)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.

Alma M A Mingels (AMA)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.

Mustafa Emin Canakci (ME)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
Emergency Department, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey.

Casper Mihl (C)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.

Kevin Vernooy (K)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Cardiology, Maastricht University Medical Center +, Maastricht, The Netherlands.

Frits W Prinzen (FW)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Physiology, Maastricht University, Maastricht, The Netherlands.

Joachim E Wildberger (JE)

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.

Iwan C C van der Horst (ICC)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.

Bas C T van Bussel (BCT)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.

Rob G H Driessen (RGH)

Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Cardiology, Maastricht University Medical Center +, Maastricht, The Netherlands.

Classifications MeSH