Association between resting-state connectivity patterns in the defensive system network and treatment response in spider phobia-a replication approach.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
07 Mar 2024
Historique:
received: 19 05 2023
accepted: 18 01 2024
revised: 15 01 2024
medline: 8 3 2024
pubmed: 8 3 2024
entrez: 7 3 2024
Statut: epublish

Résumé

Although highly effective on average, exposure-based treatments do not work equally well for all patients with anxiety disorders. The identification of pre-treatment response-predicting patient characteristics may enable patient stratification. Preliminary research highlights the relevance of inhibitory fronto-limbic networks as such. We aimed to identify pre-treatment neural signatures differing between exposure treatment responders and non-responders in spider phobia and to validate results through rigorous replication. Data of a bi-centric intervention study comprised clinical phenotyping and pre-treatment resting-state functional connectivity (rsFC) data of n = 79 patients with spider phobia (discovery sample) and n = 69 patients (replication sample). RsFC data analyses were accomplished using the Matlab-based CONN-toolbox with harmonized analyses protocols at both sites. Treatment response was defined by a reduction of >30% symptom severity from pre- to post-treatment (Spider Phobia Questionnaire Score, primary outcome). Secondary outcome was defined by a reduction of >50% in a Behavioral Avoidance Test (BAT). Mean within-session fear reduction functioned as a process measure for exposure. Compared to non-responders and pre-treatment, results in the discovery sample seemed to indicate that responders exhibited stronger negative connectivity between frontal and limbic structures and were characterized by heightened connectivity between the amygdala and ventral visual pathway regions. Patients exhibiting high within-session fear reduction showed stronger excitatory connectivity within the prefrontal cortex than patients with low within-session fear reduction. Whereas these results could be replicated by another team using the same data (cross-team replication), cross-site replication of the discovery sample findings in the independent replication sample was unsuccessful. Results seem to support negative fronto-limbic connectivity as promising ingredient to enhance response rates in specific phobia but lack sufficient replication. Further research is needed to obtain a valid basis for clinical decision-making and the development of individually tailored treatment options. Notably, future studies should regularly include replication approaches in their protocols.

Identifiants

pubmed: 38453896
doi: 10.1038/s41398-024-02799-x
pii: 10.1038/s41398-024-02799-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

137

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 44541416-TRR 58 (CRC-TRR58, Projects C09 and Z02
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 44541416-TRR 58 (CRC-TRR58, Projects C09 and Z02

Informations de copyright

© 2024. The Author(s).

Références

Loerinc AG, Meuret AE, Twohig MP, Rosenfield D, Bluett EJ, Craske MG. Response rates for CBT for anxiety disorders: need for standardized criteria. Clin Psychol Rev. 2015;42:72–82.
doi: 10.1016/j.cpr.2015.08.004
Taylor S, Abramowitz JS, McKay D. Non-adherence and non-response in the treatment of anxiety disorders. J Anxiety Disord. 2012;26:583–9.
doi: 10.1016/j.janxdis.2012.02.010
Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21:655–79.
doi: 10.1016/j.euroneuro.2011.07.018
Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21:718–79.
doi: 10.1016/j.euroneuro.2011.08.008
Duval ER, Javanbakht A, Liberzon I. Neural circuits in anxiety and stress disorders: a focused review. Ther Clin Risk Manag. 2015;11:115–26.
Messina I, Sambin M, Palmieri A, Viviani R. Neural correlates of psychotherapy in anxiety and depression: a meta-analysis. Mechelli A, editor. PloS One. 2013;8:e74657–e74657.
Vervliet B, Craske MG, Hermans D. Fear extinction and relapse: state of the art. Annu Rev Clin Psychol. 2013;9:215–48.
doi: 10.1146/annurev-clinpsy-050212-185542
Holmes EA, Craske MG, Graybiel AM. Psychological treatments: a call for mental-health science. Nature. 2014;511:287–9.
doi: 10.1038/511287a
Holmes EA, Ghaderi A, Harmer CJ, Ramchandani PG, Cuijpers P, Morrison AP, et al. The Lancet Psychiatry Commission on psychological treatments research in tomorrow’s science. Lancet Psychiatry. 2018;5:237–86.
doi: 10.1016/S2215-0366(17)30513-8
Holmes EA, O’Connor RC, Perry VH, Tracey I, Wessely S, Arseneault L, et al. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry. 2020;7:547–60.
doi: 10.1016/S2215-0366(20)30168-1
Del Casale A, Ferracuti S, Rapinesi C, Serata D, Piccirilli M, Savoja V, et al. Functional neuroimaging in specific phobia. Psychiatry Res. 2012;202:181–97.
doi: 10.1016/j.pscychresns.2011.10.009
Garcia R. Neurobiology of fear and specific phobias. Learn Mem. 2017;24:462–71.
doi: 10.1101/lm.044115.116
Hinze J, Röder A, Menzie N, Müller U, Domschke K, Riemenschneider M, et al. Spider phobia: neural networks informing diagnosis and (virtual/augmented reality-based) cognitive behavioral psychotherapy—a narrative review. Front Psychiatry. 2021;0:1435.
Ipser JC, Singh L, Stein DJ. Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin Neurosci. 2013;67:311–22.
doi: 10.1111/pcn.12055
Lueken U, Kruschwitz JD, Muehlhan M, Siegert J, Hoyer J, Wittchen HU. How specific is specific phobia? Different neural response patterns in two subtypes of specific phobia. NeuroImage. 2011;56:363–72.
doi: 10.1016/j.neuroimage.2011.02.015
Lueken U, Hilbert K, Stolyar V, Maslowski NI, Beesdo-Baum K, Wittchen HU. Neural substrates of defensive reactivity in two subtypes of specific phobia. Soc Cogn Affect Neurosci. 2014;9:1668–75.
doi: 10.1093/scan/nst159
Münsterkotter AL, Notzon S, Redlich R, Grotegerd D, Dohm K, Arolt V, et al. Spider or no spider? Neural correlates of sustained and phasic fear in spider phobia. Depress Anxiety 2015;32:656–63.
doi: 10.1002/da.22382
Peñate W, Fumero A, Viña C, Herrero M, Marrero RJ, Rivero F. A meta-analytic review of neuroimaging studies of specific phobia to small animals. Eur J Psychiatry. 2017;31:23–36.
doi: 10.1016/j.ejpsy.2016.12.003
Zilverstand A, Sorger B, Kaemingk A, Goebel R. Quantitative representations of an exaggerated anxiety response in the brain of female spider phobics-a parametric fMRI study: quantitative brain representations of phobia. Hum Brain Mapp. 2017;38:3025–38.
doi: 10.1002/hbm.23571
Hermann A, Schäfer A, Walter B, Stark R, Vaitl D, Schienle A. Diminished medial prefrontal cortex activity in blood-injection-injury phobia. Biol Psychol. 2007;75:124–30.
doi: 10.1016/j.biopsycho.2007.01.002
Hermann A, Schäfer A, Walter B, Stark R, Vaitl D, Schienle A. Emotion regulation in spider phobia: role of the medial prefrontal cortex. Soc Cogn Affect Neurosci. 2009;4:257–67.
doi: 10.1093/scan/nsp013
Schienle A, Schäfer A, Hermann A, Rohrmann S, Vaitl D. Symptom provocation and reduction in patients suffering from spider phobia: an fMRI study on exposure therapy. Eur Arch Psychiatry Clin Neurosci. 2007;257:486–93.
doi: 10.1007/s00406-007-0754-y
Hilbert K, Kunas SL, Lueken U, Kathmann N, Fydrich T, Fehm L. Predicting cognitive behavioral therapy outcome in the outpatient sector based on clinical routine data: a machine learning approach. Behav Res Ther. 2020;124:103530.
doi: 10.1016/j.brat.2019.103530
Lueken U, Zierhut KC, Hahn T, Straube B, Kircher T, Reif A, et al. Neurobiological markers predicting treatment response in anxiety disorders: A systematic review and implications for clinical application. Neurosci Biobehav Rev. 2016;66:143–62.
doi: 10.1016/j.neubiorev.2016.04.005
Maron E, Nutt D. Biological predictors of pharmacological therapy in anxiety disorders. Dialogues Clin Neurosci. 2015;17:305–17.
doi: 10.31887/DCNS.2015.17.3/emaron
Picó-Pérez M, Fullana MA, Albajes-Eizagirre A, Vega D, Marco-Pallarés J, Vilar A, et al. Neural predictors of cognitive-behavior therapy outcome in anxiety-related disorders: a meta-analysis of task-based fMRI studies. Psychol Med. 2023;53:3387–95.
doi: 10.1017/S0033291721005444
Roesmann K, Leehr EJ, Böhnlein J, Steinberg C, Seeger F, Schwarzmeier H, et al. Behavioral and magnetoencephalographic correlates of fear generalization are associated with responses to later virtual reality exposure therapy in spider phobia. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:221–30.
Roesmann K, Toelle J, Leehr EJ, Wessing I, Böhnlein J, Seeger F, et al. Neural correlates of fear conditioning are associated with treatment-outcomes to behavioral exposure in spider phobia—evidence from magnetoencephalography. NeuroImage Clin. 2022;35:103046.
doi: 10.1016/j.nicl.2022.103046
Shin LM, Davis F, VanElzakker MB, Dahlgren MK, Dubois SJ. Neuroimaging predictors of treatment response in anxiety disorders. Biol Mood Anxiety Disord. 2013;3:15.
doi: 10.1186/2045-5380-3-15
Marwood L, Wise T, Perkins AM, Cleare AJ. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety. Neurosci Biobehav Rev. 2018;95:61–72.
doi: 10.1016/j.neubiorev.2018.09.022
Santos VA, Carvalho DD, Van Ameringen M, Nardi AE, Freire RC. Neuroimaging findings as predictors of treatment outcome of psychotherapy in anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:60–71.
doi: 10.1016/j.pnpbp.2018.04.001
Schrammen E, Roesmann K, Rosenbaum D, Redlich R, Harenbrock J, Dannlowski U, et al. Functional neural changes associated with psychotherapy in anxiety disorders—a meta-analysis of longitudinal fMRI studies. Neurosci Biobehav Rev. 2022;142:104895.
doi: 10.1016/j.neubiorev.2022.104895
Åhs F, Pissiota A, Michelgård Å, Frans Ö, Furmark T, Appel L, et al. Disentangling the web of fear: amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Res Neuroimaging. 2009;172:103–8.
doi: 10.1016/j.pscychresns.2008.11.004
Stefanescu MR, Endres RJ, Hilbert K, Wittchen HU, Lueken U. Networks of phobic fear: functional connectivity shifts in two subtypes of specific phobia. Neurosci Lett. 2018;662:167–72.
doi: 10.1016/j.neulet.2017.10.031
Geiger MJ, Domschke K, Ipser J, Hattingh C, Baldwin DS, Lochner C, et al. Altered executive control network resting-state connectivity in social anxiety disorder. World J Biol Psychiatry. 2016;17:47–57.
doi: 10.3109/15622975.2015.1083613
Hahn A, Stein P, Windischberger C, Weissenbacher A, Spindelegger C, Moser E, et al. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage. 2011;56:881–9.
doi: 10.1016/j.neuroimage.2011.02.064
Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, et al. The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behav Brain Res. 2011;223:403–10.
doi: 10.1016/j.bbr.2011.04.025
Liao W, Chen H, Feng Y, Mantini D, Gentili C, Pan Z, et al. Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage. 2010;52:1549–58.
doi: 10.1016/j.neuroimage.2010.05.010
Makovac E, Meeten F, Watson DR, Herman A, Garfinkel SN, D. Critchley H, et al. Alterations in amygdala-prefrontal functional connectivity account for excessive worry and autonomic dysregulation in generalized anxiety disorder. Biol Psychiatry. 2016;80:786–95.
doi: 10.1016/j.biopsych.2015.10.013
Pannekoek JN, Veer IM, van Tol MJ, van der Werff SJA, Demenescu LR, Aleman A, et al. Resting-state functional connectivity abnormalities in limbic and salience networks in social anxiety disorder without comorbidity. Eur Neuropsychopharmacol. 2013;23:186–95.
doi: 10.1016/j.euroneuro.2012.04.018
Sylvester CM, Corbetta M, Raichle ME, Rodebaugh TL, Schlaggar BL, Sheline YI, et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 2012;35:527–35.
doi: 10.1016/j.tins.2012.04.012
Xu J, Van Dam NT, Feng C, Luo Y, Ai H, Gu R, et al. Anxious brain networks: a coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci Biobehav Rev. 2019;96:21–30.
doi: 10.1016/j.neubiorev.2018.11.005
Böhnlein J, Leehr EJ, Roesmann K, Sappelt T, Platte O, Grotegerd D, et al. Neural processing of emotional facial stimuli in specific phobia: an fMRI study. Depress Anxiety. 2021;38:846–59.
doi: 10.1002/da.23191
Scharmüller W, Leutgeb V, Schöngaßner F, Hermann A, Stark R, Schienle A. Altered functional connectivity of basal ganglia circuitry in dental phobia. Soc Cogn Affect Neurosci. 2014;9:1584–8.
doi: 10.1093/scan/nst150
Maxwell SE, Lau MY, Howard GS. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am Psychol. 2015;70:487–98.
doi: 10.1037/a0039400
Shrout PE, Rodgers JL. Psychology, science, and knowledge construction: broadening perspectives from the replication crisis. Annu Rev Psychol. 2018;69:487–510.
doi: 10.1146/annurev-psych-122216-011845
Wittchen H-U, Wunderlich U, Gruschwitz S, Zaudig M. SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen Originalversion des SKID I. Göttingen: Hogrefe; 1997.
Klorman R, Weerts TC, Hastings JE, Melamed BG, Lang PJ. Psychometric description of some specific-fear questionnaires. Behav Ther. 1974;5:401–9.
doi: 10.1016/S0005-7894(74)80008-0
Schwarzmeier H, Leehr EJ, Böhnlein J, Seeger FR, Roesmann K, Gathmann B, et al. Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross‐validation machine learning approach. Int J Methods Psychiatr Res. 2019;e1812–e1812.
Leehr EJ, Roesmann K, Böhnlein J, Dannlowski U, Gathmann B, Herrmann MJ, et al. Clinical predictors of treatment response towards exposure therapy in virtuo in spider phobia: a machine learning and external cross-validation approach. J Anxiety Disord [Internet]. 2021;83. Available from: https://pubmed.ncbi.nlm.nih.gov/34298236/ .
Rupp C, Doebler P, Ehring T, Vossbeck-Elsebusch AN. Emotional processing theory put to test: a meta-analysis on the association between process and outcome measures in exposure therapy. Clin Psychol Psychother. 2017;24:697–711.
doi: 10.1002/cpp.2039
Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. NeuroImage. 2020;206:116189.
doi: 10.1016/j.neuroimage.2019.116189
Botvinik-Nezer R, Wager TD. Reproducibility in neuroimaging analysis: challenges and solutions. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:780–8.
Heller AS, Bagot RC. Is hippocampal replay a mechanism for anxiety and depression? JAMA Psychiatry. 2020;77:431.
doi: 10.1001/jamapsychiatry.2019.4788
Zielinski MC, Tang W, Jadhav SP. The role of replay and theta sequences in mediating hippocampal‐prefrontal interactions for memory and cognition. Hippocampus. 2020;30:60–72.
doi: 10.1002/hipo.22821
Schapiro AC, McDevitt EA, Rogers TT, Mednick SC, Norman KA. Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nat Commun. 2018;9:3920.
doi: 10.1038/s41467-018-06213-1
Schuck NW, Niv Y. Sequential replay of nonspatial task states in the human hippocampus. Science. 2019;364:eaaw5181.
doi: 10.1126/science.aaw5181
Staresina BP, Alink A, Kriegeskorte N, Henson RN. Awake reactivation predicts memory in humans. Proc Natl Acad Sci. 2013;110:21159–64.
doi: 10.1073/pnas.1311989110
Wu CT, Haggerty D, Kemere C, Ji D. Hippocampal awake replay in fear memory retrieval. Nat Neurosci. 2017;20:571–80.
doi: 10.1038/nn.4507
Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron. 2016;89:857–66.
doi: 10.1016/j.neuron.2016.01.011
Lesting J, Narayanan RT, Kluge C, Sangha S, Seidenbecher T, Pape HC. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. Reif A, editor. PLoS One. 2011;6:e21714.
DeYoe EA, Felleman DJ, Van Essen DC, McClendon E. Multiple processing streams in occipitotemporal visual cortex. Nature. 1994;371:151–4.
doi: 10.1038/371151a0
Gilbert CD. The constructive nature of visual processing. In: Principles of Neural Science, 5th Edition [Internet]. New York, NY: McGraw-Hill Education; 2014 [cited 2023 Feb 8]. Available from: neurology.mhmedical.com/content.aspx?aid=1125179264 .
Catani M. Occipito-temporal connections in the human brain. Brain. 2003;126:2093–107.
doi: 10.1093/brain/awg203
Furl N, Henson RN, Friston KJ, Calder AJ. Top-down control of visual responses to fear by the amygdala. J Neurosci. 2013;33:17435–43.
doi: 10.1523/JNEUROSCI.2992-13.2013
Lim SL, Padmala S, Pessoa L. Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions. Proc Natl Acad Sci. 2009;106:16841–6.
doi: 10.1073/pnas.0904551106
Morris J. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain. 1998;121:47–57.
doi: 10.1093/brain/121.1.47
Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat Neurosci. 2004;7:1271–8.
doi: 10.1038/nn1341
Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia. 2007;45:174–94.
doi: 10.1016/j.neuropsychologia.2006.06.003
Nawa NE, Ando H. Effective connectivity within the ventromedial prefrontal cortex-hippocampus-amygdala network during the elaboration of emotional autobiographical memories. NeuroImage. 2019;189:316–28.
doi: 10.1016/j.neuroimage.2019.01.042
Fullana MA, Harrison BJ, Soriano-Mas C, Vervliet B, Cardoner N, Àvila-Parcet A, et al. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Mol Psychiatry. 2016;21:500–8.
doi: 10.1038/mp.2015.88
Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72.
doi: 10.1038/sj.npp.1301555
Sehlmeyer C, Schöning S, Zwitserlood P, Pfleiderer B, Kircher T, Arolt V, et al. Human fear conditioning and extinction in neuroimaging: a systematic review. Gendelman HE, editor. PLoS One. 2009;4:e5865.
Shin LM, Liberzon I. The neurocircuitry of fear, stress and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.
doi: 10.1038/npp.2009.83
Sheppes G, Suri G, Gross JJ. Emotion regulation and psychopathology. Ann Rev Clin Psychol. 2015;11:379–405.
doi: 10.1146/annurev-clinpsy-032814-112739
Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U. Neural network of cognitive emotion regulation–an ALE meta-analysis and MACM analysis. Neuroimage. 2014;87:345–55.
doi: 10.1016/j.neuroimage.2013.11.001
Golkar A, Lonsdorf TB, Olsson A, Lindstrom KM, Berrebi J, Fransson P, et al. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PloS One. 2012;7:e48107–e48107.
doi: 10.1371/journal.pone.0048107
Phillips ML, Ladouceur CD, Drevets WC. Neural systems underlying voluntary and automatic emotion regulation: toward a neural model of bipolar disorder. Mol Psychiatry. 2008;13:829–829.
doi: 10.1038/mp.2008.82
Delgado MR, Nearing KI, LeDoux JE, Phelps EA. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron. 2008;59:829–38.
doi: 10.1016/j.neuron.2008.06.029
Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. NeuroImage. 2017;151:105–16.
doi: 10.1016/j.neuroimage.2016.06.009
Botvinik-Nezer R, Wager T. Analysis reproducibility in mental health research: challenges and solutions [Internet]. OSF Preprints; 2022 [cited 2023 Feb 13]. Available from: https://osf.io/ujnmp/ .
Ashar YK, Clark J, Gunning FM, Goldin P, Gross JJ, Wager TD. Brain markers predicting response to cognitive-behavioral therapy for social anxiety disorder: an independent replication of Whitfield-Gabrieli et al. 2015. Transl Psychiatry. 2021;11:260.
doi: 10.1038/s41398-021-01366-y
Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.
doi: 10.1038/s41586-022-04492-9
Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, Johannesson M, et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature. 2020;582:84–84.
doi: 10.1038/s41586-020-2314-9
Botvinik-Nezer R, Iwanir R, Holzmeister F, Huber J, Johannesson M, Kirchler M, et al. fMRI data of mixed gambles from the Neuroimaging Analysis Replication and Prediction Study. Sci Data. 2019;6:106.
doi: 10.1038/s41597-019-0113-7
Chambers CD, Tzavella L. The past, present and future of Registered Reports. Nat Hum Behav. 2021;6:29–42.
doi: 10.1038/s41562-021-01193-7
Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, et al. A manifesto for reproducible science. Nat Hum Behav. 2017;1:1–9.
doi: 10.1038/s41562-016-0021
Paulus MP, Stein MB. Interoception in anxiety and depression. Brain Struct Funct. 2010;214:451.
doi: 10.1007/s00429-010-0258-9
Kenwood MM, Kalin NH. Nonhuman primate models to explore mechanisms underlying early-life temperamental anxiety. Biol Psychiatry. 2021;89:659–71.
doi: 10.1016/j.biopsych.2020.08.028
Ledoux J, Daw ND. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci. 2018;19:269–82.
doi: 10.1038/nrn.2018.22
Wechsler TF, Kümpers F, Mühlberger A. Inferiority or even superiority of virtual reality exposure therapy in phobias?—A systematic review and quantitative meta-analysis on randomized controlled trials specifically comparing the efficacy of virtual reality exposure to gold standard in vivo exposure in agoraphobia, specific phobia, and social phobia. Front Psychol. 2019;10:1758.
doi: 10.3389/fpsyg.2019.01758
Goldin PR, Gross JJ. Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emot Wash DC. 2010;10:83–91.
Neacsiu AD, Eberle JW, Kramer R, Wiesmann T, Linehan MM. Dialectical behavior therapy skills for transdiagnostic emotion dysregulation: a pilot randomized controlled trial. Behav Res Ther. 2014;59:40–51.
doi: 10.1016/j.brat.2014.05.005
Brühl AB, Delsignore A, Komossa K, Weidt S. Neuroimaging in social anxiety disorder—a meta-analytic review resulting in a new neurofunctional model. Neurosci Biobehav Rev. 2014;47:260–80.
doi: 10.1016/j.neubiorev.2014.08.003
Lorenzetti V, Melo B, Basílio R, Suo C, Yücel M, Tierra-Criollo CJ, et al. Emotion regulation using virtual environments and real-time fMRI neurofeedback. Front Neurol. 2018;9:390.
doi: 10.3389/fneur.2018.00390
Zotev V, Phillips R, Young KD, Drevets WC, Bodurka J. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. Soriano-Mas C, editor. PLoS One. 2013;8:e79184.
Bach DR, Korn CW, Vunder J, Bantel A. Effect of valproate and pregabalin on human anxiety-like behaviour in a randomised controlled trial. Transl Psychiatry. 2018;8:157.
doi: 10.1038/s41398-018-0206-7
Haag L, Quetscher C, Dharmadhikari S, Dydak U, Schmidt-Wilcke T, Beste C. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes: Striatal GABA modulates cognitive control. Hum Brain Mapp. 2015;36:4383–93.
doi: 10.1002/hbm.22920
Dittert N, Hüttner S, Polak T, Herrmann MJ. Augmentation of fear extinction by transcranial direct current stimulation (tDCS). Front Behav Neurosci. 2018;12:76.
doi: 10.3389/fnbeh.2018.00076
D’Urso G, Mantovani A, Patti S, Toscano E, de Bartolomeis A. Transcranial direct current stimulation in obsessive-compulsive disorder, posttraumatic stress disorder, and anxiety disorders. J ECT. 2018;34:172–81.
doi: 10.1097/YCT.0000000000000538
Herrmann MJ. Non-invasive brain stimulation and fear extinction. A systematic review [Internet]. PsyArXiv. 2019. [cited 2023 Feb 6]. Available from: https://osf.io/u65va .
Kekic M, Boysen E, Campbell IC, Schmidt U. A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. J Psychiatr Res. 2016;74:70–86.
doi: 10.1016/j.jpsychires.2015.12.018
Raij T, Nummenmaa A, Marin MF, Porter D, Furtak S, Setsompop K, et al. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biol Psychiatry. 2018;84:129–37.
doi: 10.1016/j.biopsych.2017.10.022
Roesmann K, Kroker T, Hein S, Rehbein M, Winker C, Leehr EJ, et al. Transcranial direct current stimulation of the ventromedial prefrontal cortex modulates perceptual and neural patterns of fear generalization. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:210–20.

Auteurs

Elisabeth J Leehr (EJ)

Institute for Translational Psychiatry, University of Münster, Münster, Germany. leehr@uni-muenster.de.

Fabian R Seeger (FR)

Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany.
Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany.

Joscha Böhnlein (J)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Bettina Gathmann (B)

Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.

Thomas Straube (T)

Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.
Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.

Kati Roesmann (K)

Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany.
Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Osnabrück, Germany.

Markus Junghöfer (M)

Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.

Hanna Schwarzmeier (H)

Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany.

Niklas Siminski (N)

Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany.

Martin J Herrmann (MJ)

Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany.

Till Langhammer (T)

Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.

Janik Goltermann (J)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Dominik Grotegerd (D)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Susanne Meinert (S)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Nils R Winter (NR)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Udo Dannlowski (U)

Institute for Translational Psychiatry, University of Münster, Münster, Germany.

Ulrike Lueken (U)

Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany.
Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.

Classifications MeSH