Prevalence of chromosome 8p11.2 translocations and correlation with myeloid and lymphoid neoplasms associated with FGFR1 abnormalities in a consecutive cohort from nine institutions in Japan.
8p11
Eosinophilia
FGFR1
Journal
International journal of hematology
ISSN: 1865-3774
Titre abrégé: Int J Hematol
Pays: Japan
ID NLM: 9111627
Informations de publication
Date de publication:
08 Mar 2024
08 Mar 2024
Historique:
received:
26
10
2023
accepted:
27
02
2024
revised:
20
02
2024
medline:
8
3
2024
pubmed:
8
3
2024
entrez:
8
3
2024
Statut:
aheadofprint
Résumé
Myeloid and lymphoid neoplasms associated with FGFR1 abnormalities (MLN-FGFR1 abnormalities) are rare hematologic malignancies associated with chromosome 8p11.2 abnormalities. Translocations of 8p11.2 were detected in 10 of 17,039 (0.06%) unique patient cytogenetic studies performed at nine institutions in Japan. No inversions or insertions of 8p11.2 were detected. Among the 10 patients with 8p11.2 translocations, three patients were diagnosed with MLN-FGFR1 abnormalities, which were confirmed by FISH analysis. Peripheral blood eosinophilia was observed in all three patients, and all progressed to AML or T-lymphoblastic lymphoma/leukemia. The prevalence of 8p11.2 translocations in clinical practice and the proportion of MLN-FGFR1 abnormalities in patients with 8p11.2 translocations in Japan were consistent with those in previous reports from Western countries.
Identifiants
pubmed: 38457113
doi: 10.1007/s12185-024-03740-0
pii: 10.1007/s12185-024-03740-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : University of Miyazaki Hospital
ID : R5
Informations de copyright
© 2024. The Author(s).
Références
Li T, Zhang G, Zhang X, Lin H, Liu Q. The 8p11 myeloproliferative syndrome: genotypic and phenotypic classification and targeted therapy. Front Oncol. 2022;12:1015792.
doi: 10.3389/fonc.2022.1015792
pubmed: 36408177
pmcid: 9669583
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.
Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300.
doi: 10.1002/med.21288
pubmed: 23696246
Nonaka M, Kawano N, Hisakata N, Mizutani S, Kugimiya H, Takigawa K, et al. Eight p11 myeloproliferative syndrome (EMS) that initially manifested as angioimmunoblastic T-cell lymphoma (AITL) and subsequently transformed into MDS/MPN complicating with t (8;13) (p11.2; q12). J Japanese Soc Lab Hematol. 2023;24(3):440–7.
Patnaik MM, Gangat N, Knudson RA, Keefe JG, Hanson CA, Pardanani A, et al. Chromosome 8p11.2 translocations: prevalence, FISH analysis for FGFR1 and MYST3, and clinicopathologic correlates in a consecutive cohort of 13 cases from a single institution. Am J Hematol. 2010;85(4):238–42.
Baldazzi C, Luatti S, Paolini S, Papayannidis C, Marzocchi G, Ameli G, et al. FGFR1 and KAT6A rearrangements in patients with hematological malignancies and chromosome 8p11 abnormalities: biological and clinical features. Am J Hematol. 2016;91(3):E14–6.
doi: 10.1002/ajh.24276
pubmed: 26667788
Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC, et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell. 2004;5(3):287–98.
doi: 10.1016/S1535-6108(04)00053-4
pubmed: 15050920
Agerstam H, Jaras M, Andersson A, Johnels P, Hansen N, Lassen C, et al. Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice. Blood. 2010;116(12):2103–11.
doi: 10.1182/blood-2009-05-217182
pubmed: 20554971
Umino K, Fujiwara SI, Ikeda T, Toda Y, Ito S, Mashima K, et al. Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement. Hematology. 2018;23(8):470–7.
doi: 10.1080/10245332.2018.1446279
pubmed: 29486661
Subbiah V, Iannotti NO, Gutierrez M, Smith DC, Feliz L, Lihou CF, et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1–3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann Oncol. 2022;33(5):522–33.
doi: 10.1016/j.annonc.2022.02.001
pubmed: 35176457
Verstovsek S, Gotlib J, Vannucchi AM, Rambaldi A, Reiter A, Shomali W, et al. FIGHT-203, an ongoing phase 2 study of pemigatinib in patients with Myeloid/Lymphoid Neoplasms (MLNs) with Fibroblast Growth Factor Receptor 1 (FGFR1) Rearrangement (MLNFGFR1): a focus on centrally reviewed clinical and cytogenetic responses in previously treated patients. Blood. 2022;140(Suppl 1):3980–2.
doi: 10.1182/blood-2022-163099
Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14(1):33–41.
doi: 10.1038/ng0996-33
pubmed: 8782817
Gervais C, Murati A, Helias C, Struski S, Eischen A, Lippert E, et al. Acute myeloid leukaemia with 8p11 (MYST3) rearrangement: an integrated cytologic, cytogenetic and molecular study by the groupe francophone de cytogenetique hematologique. Leukemia. 2008;22(8):1567–75.
doi: 10.1038/leu.2008.128
pubmed: 18528428
Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Can Res. 2010;70(5):2085–94.
doi: 10.1158/0008-5472.CAN-09-3746
Hu Y, Ai LS, Zhou LQ. Prognostic value of FGFR1 expression and amplification in patients with HNSCC: a systematic review and meta-analysis. PLoS ONE. 2021;16(5): e0251202.
doi: 10.1371/journal.pone.0251202
pubmed: 33989301
pmcid: 8121309
Russell PA, Yu Y, Young RJ, Conron M, Wainer Z, Alam N, et al. Prevalence, morphology, and natural history of FGFR1-amplified lung cancer, including squamous cell carcinoma, detected by FISH and SISH. Mod Pathol. 2014;27(12):1621–31.
doi: 10.1038/modpathol.2014.71
pubmed: 24762544