Prevalence of chromosome 8p11.2 translocations and correlation with myeloid and lymphoid neoplasms associated with FGFR1 abnormalities in a consecutive cohort from nine institutions in Japan.

8p11 Eosinophilia FGFR1

Journal

International journal of hematology
ISSN: 1865-3774
Titre abrégé: Int J Hematol
Pays: Japan
ID NLM: 9111627

Informations de publication

Date de publication:
08 Mar 2024
Historique:
received: 26 10 2023
accepted: 27 02 2024
revised: 20 02 2024
medline: 8 3 2024
pubmed: 8 3 2024
entrez: 8 3 2024
Statut: aheadofprint

Résumé

Myeloid and lymphoid neoplasms associated with FGFR1 abnormalities (MLN-FGFR1 abnormalities) are rare hematologic malignancies associated with chromosome 8p11.2 abnormalities. Translocations of 8p11.2 were detected in 10 of 17,039 (0.06%) unique patient cytogenetic studies performed at nine institutions in Japan. No inversions or insertions of 8p11.2 were detected. Among the 10 patients with 8p11.2 translocations, three patients were diagnosed with MLN-FGFR1 abnormalities, which were confirmed by FISH analysis. Peripheral blood eosinophilia was observed in all three patients, and all progressed to AML or T-lymphoblastic lymphoma/leukemia. The prevalence of 8p11.2 translocations in clinical practice and the proportion of MLN-FGFR1 abnormalities in patients with 8p11.2 translocations in Japan were consistent with those in previous reports from Western countries.

Identifiants

pubmed: 38457113
doi: 10.1007/s12185-024-03740-0
pii: 10.1007/s12185-024-03740-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : University of Miyazaki Hospital
ID : R5

Informations de copyright

© 2024. The Author(s).

Références

Li T, Zhang G, Zhang X, Lin H, Liu Q. The 8p11 myeloproliferative syndrome: genotypic and phenotypic classification and targeted therapy. Front Oncol. 2022;12:1015792.
doi: 10.3389/fonc.2022.1015792 pubmed: 36408177 pmcid: 9669583
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.
Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300.
doi: 10.1002/med.21288 pubmed: 23696246
Nonaka M, Kawano N, Hisakata N, Mizutani S, Kugimiya H, Takigawa K, et al. Eight p11 myeloproliferative syndrome (EMS) that initially manifested as angioimmunoblastic T-cell lymphoma (AITL) and subsequently transformed into MDS/MPN complicating with t (8;13) (p11.2; q12). J Japanese Soc Lab Hematol. 2023;24(3):440–7.
Patnaik MM, Gangat N, Knudson RA, Keefe JG, Hanson CA, Pardanani A, et al. Chromosome 8p11.2 translocations: prevalence, FISH analysis for FGFR1 and MYST3, and clinicopathologic correlates in a consecutive cohort of 13 cases from a single institution. Am J Hematol. 2010;85(4):238–42.
Baldazzi C, Luatti S, Paolini S, Papayannidis C, Marzocchi G, Ameli G, et al. FGFR1 and KAT6A rearrangements in patients with hematological malignancies and chromosome 8p11 abnormalities: biological and clinical features. Am J Hematol. 2016;91(3):E14–6.
doi: 10.1002/ajh.24276 pubmed: 26667788
Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC, et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell. 2004;5(3):287–98.
doi: 10.1016/S1535-6108(04)00053-4 pubmed: 15050920
Agerstam H, Jaras M, Andersson A, Johnels P, Hansen N, Lassen C, et al. Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice. Blood. 2010;116(12):2103–11.
doi: 10.1182/blood-2009-05-217182 pubmed: 20554971
Umino K, Fujiwara SI, Ikeda T, Toda Y, Ito S, Mashima K, et al. Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement. Hematology. 2018;23(8):470–7.
doi: 10.1080/10245332.2018.1446279 pubmed: 29486661
Subbiah V, Iannotti NO, Gutierrez M, Smith DC, Feliz L, Lihou CF, et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1–3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann Oncol. 2022;33(5):522–33.
doi: 10.1016/j.annonc.2022.02.001 pubmed: 35176457
Verstovsek S, Gotlib J, Vannucchi AM, Rambaldi A, Reiter A, Shomali W, et al. FIGHT-203, an ongoing phase 2 study of pemigatinib in patients with Myeloid/Lymphoid Neoplasms (MLNs) with Fibroblast Growth Factor Receptor 1 (FGFR1) Rearrangement (MLNFGFR1): a focus on centrally reviewed clinical and cytogenetic responses in previously treated patients. Blood. 2022;140(Suppl 1):3980–2.
doi: 10.1182/blood-2022-163099
Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14(1):33–41.
doi: 10.1038/ng0996-33 pubmed: 8782817
Gervais C, Murati A, Helias C, Struski S, Eischen A, Lippert E, et al. Acute myeloid leukaemia with 8p11 (MYST3) rearrangement: an integrated cytologic, cytogenetic and molecular study by the groupe francophone de cytogenetique hematologique. Leukemia. 2008;22(8):1567–75.
doi: 10.1038/leu.2008.128 pubmed: 18528428
Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Can Res. 2010;70(5):2085–94.
doi: 10.1158/0008-5472.CAN-09-3746
Hu Y, Ai LS, Zhou LQ. Prognostic value of FGFR1 expression and amplification in patients with HNSCC: a systematic review and meta-analysis. PLoS ONE. 2021;16(5): e0251202.
doi: 10.1371/journal.pone.0251202 pubmed: 33989301 pmcid: 8121309
Russell PA, Yu Y, Young RJ, Conron M, Wainer Z, Alam N, et al. Prevalence, morphology, and natural history of FGFR1-amplified lung cancer, including squamous cell carcinoma, detected by FISH and SISH. Mod Pathol. 2014;27(12):1621–31.
doi: 10.1038/modpathol.2014.71 pubmed: 24762544

Auteurs

Kensuke Usuki (K)

Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan.

Takuro Kameda (T)

Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Noriaki Kawano (N)

Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan.

Tomoki Ito (T)

First Department of Internal Medicine, Kansai Medical University, Osaka, Japan.

Yoshinori Hashimoto (Y)

Department of Hematology, Tottori Prefectural Central Hospital, Tottori, Japan.

Kotaro Shide (K)

Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Hiroshi Kawano (H)

Koga General Hospital, Miyazaki, Japan.

Masaaki Sekine (M)

Koga General Hospital, Miyazaki, Japan.

Takanori Toyama (T)

Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan.

Hiromitsu Iizuka (H)

Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan.

Seiichi Sato (S)

Miyakonojo Medical Center, Miyakonojo, Japan.

Masanori Takeuchi (M)

Aisenkai Nichinan Hospital, Nichinan, Japan.

Junzo Ishizaki (J)

Aisenkai Nichinan Hospital, Nichinan, Japan.

Kouichi Maeda (K)

Miyakonojo Medical Center, Miyakonojo, Japan.

Michikazu Nakai (M)

Clinical Research Support Center, University of Miyazaki Hospital, Miyazaki, Japan.

Kiyoshi Yamashita (K)

Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan.

Yoko Kubuki (Y)

Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Kazuya Shimoda (K)

Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan. kshimoda@med.miyazaki-u.ac.jp.

Classifications MeSH