Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 Mar 2024
Historique:
received: 04 04 2023
accepted: 01 03 2024
medline: 9 3 2024
pubmed: 9 3 2024
entrez: 8 3 2024
Statut: epublish

Résumé

Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.

Identifiants

pubmed: 38459105
doi: 10.1038/s41467-024-46526-y
pii: 10.1038/s41467-024-46526-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2126

Subventions

Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 869300
Organisme : EC | LIFE programme (LIFE)
ID : LIFE 18 IPC 000001

Informations de copyright

© 2024. The Author(s).

Références

Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
pubmed: 28360268 doi: 10.1126/science.aai9214
Baudron, A. R. et al. Changing fish distributions challenge the effective management of European fisheries. Ecography 43, 494–505 (2020).
doi: 10.1111/ecog.04864
IPCC. Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (eds. Pörtner, et al.) In press. (2019).
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
pubmed: 19620720 pmcid: 2722360 doi: 10.1073/pnas.0902080106
Monahan, W. B. & Tingley, M. W. Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change. PLoS ONE 7, e42097 (2012).
pubmed: 22860062 pmcid: 3408403 doi: 10.1371/journal.pone.0042097
Bruge, A., Alvarez, P., Fontán, A., Cotano, U. & Chust, G. Thermal niche tracking and future distribution of Atlantic mackerel spawning in response to ocean warming. Front. Mar. Sci. 3, 86 (2016).
doi: 10.3389/fmars.2016.00086
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).
pubmed: 24031017 doi: 10.1126/science.1239352
Queirós, A. M., Fernandes, J., Genevier, L. & Lynam, C. P. Climate change alters fish community size-structure, requiring adaptive policy targets. Fish Fish. 19, 613–621 (2018).
doi: 10.1111/faf.12278
Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 1–6 (2020).
doi: 10.1038/s41559-020-1171-0
Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).
pubmed: 32959989 doi: 10.1111/brv.12653
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
doi: 10.1038/nclimate1958
Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e1572 (2020).
pubmed: 32220327 doi: 10.1016/j.cub.2020.02.043
Peck M. A. et al. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. FAO Fisheries Technical Paper 2018: No. 627 (2018).
Philippart, C. et al. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. J. Exp. Mar. Biol. Ecol. 400, 52–69 (2011).
doi: 10.1016/j.jembe.2011.02.023
McLean, M. et al. Disentangling tropicalization and deborealization in marine ecosystems under climate change. Curr. Biol. 31, 4817–4823.e4815 (2021).
pubmed: 34499852 doi: 10.1016/j.cub.2021.08.034
Bowler, D. E. et al. Cross-taxa generalities in the relationship between population abundance and ambient temperatures. Proc. R. Soc. B: Biol. Sci. 284, 20170870 (2017).
doi: 10.1098/rspb.2017.0870
Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).
Burrows, M. T. et al. Global-scale species distributions predict temperature-related changes in species composition of rocky shore communities in Britain. Glob. Change Biol. 26, 2093–2105 (2020).
doi: 10.1111/gcb.14968
Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).
doi: 10.1038/s41558-019-0631-5
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
pubmed: 31624208 doi: 10.1126/science.aaw1620
Cwynar, L. C. & MacDonald, G. M. Geographical variation of lodgepole pine in relation to population history. Am. Nat. 129, 463–469 (1987).
doi: 10.1086/284651
Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).
doi: 10.1111/j.1600-0706.2013.00399.x
Albano, P. G. et al. Native biodiversity collapse in the eastern Mediterranean. Proc. R. Soc. B: Biol. Sci. 288, 20202469 (2021).
doi: 10.1098/rspb.2020.2469
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
pubmed: 31019302 doi: 10.1038/s41586-019-1132-4
Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
doi: 10.1890/01-0622
Chust, G. et al. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Sci. Rep. 6, 28730 (2016).
pubmed: 27344967 pmcid: 4921837 doi: 10.1038/srep28730
Jorda, G., Marba, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Change 2, 821–824 (2012).
doi: 10.1038/nclimate1533
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
pubmed: 18974339 doi: 10.1126/science.1163156
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B: Biol. Sci. 275, 2743–2748 (2008).
doi: 10.1098/rspb.2008.0878
Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).
pubmed: 26560025 doi: 10.1038/nature16144
Vellend, M. Do commonly used indices of β-diversity measure species turnover? J. Veg. Sci. 12, 545–552 (2001).
doi: 10.2307/3237006
Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 0182 (2017).
doi: 10.1038/s41559-017-0182
Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).
doi: 10.1111/gcb.15035
Robinson, L. M., Hobday, A. J., Possingham, H. P. & Richardson, A. J. Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change. Deep-Sea Res. Part Ii-Top. Stud. Oceanogr. 113, 225–234 (2015).
doi: 10.1016/j.dsr2.2014.04.007
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
doi: 10.1038/nclimate1539
Jablonski, D. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl Acad. Sci. USA 98, 5393–5398 (2001).
pubmed: 11344284 pmcid: 33224 doi: 10.1073/pnas.101092598
Donnelly, A. et al. Surviving in a warmer world environmental and genetic responses. Clim. Res 53, 245–262 (2012).
doi: 10.3354/cr01102
EEA. Climate change, impacts and vulnerability in Europe 2016. An Indicator-based Report. EEA Report No 1. (2017).
EEA. European Sea Surface Temperature (ed Agency EE) (2022).
Kniebusch, M., Meier, H. E. M., Neumann, T. & Börgel, F. Temperature variability of the Baltic Sea Since 1850 and attribution to atmospheric forcing variables. J. Geophys. Res. Oceans 124, 4168–4187 (2019).
doi: 10.1029/2018JC013948
Palmer, M. et al. Chapter 9: Ocean, Cryosphere And Sea Level Change - IPCC AR6 Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021 (2021).
Chust, G. et al. Climate regime shifts and biodiversity redistribution in the Bay of Biscay. Sci. Total Environ. 803, 149622 (2022).
pubmed: 34496346 doi: 10.1016/j.scitotenv.2021.149622
Barnosky, A. D. Climatic change, refugia, and biodiversity: where do we go from here? An editorial comment. Clim. Change 86, 29–32 (2008).
doi: 10.1007/s10584-007-9333-5
Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).
doi: 10.1038/s41558-020-0773-5
Hawkins, S. J., Burrows, M. T. & Mieszkowska N. Shoreline sentinels of global change show the consequences of extreme events. Global Chang. Biol 29, 7–9 (2023).
Lima, F. P. & Wethey, D. S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 3, 704 (2012).
pubmed: 22426225 doi: 10.1038/ncomms1713
Gordó-Vilaseca, C., Stephenson, F., Coll, M., Lavin, C. & Costello, M. J. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl Acad. Sci. USA 120, e2120869120 (2023).
pubmed: 36656855 pmcid: 9942854 doi: 10.1073/pnas.2120869120
Costoya, X., deCastro, M., Gómez-Gesteira, M. & Santos, F. Changes in sea surface temperature seasonality in the Bay of Biscay over the last decades (1982–2014). J. Mar. Syst. 150, 91–101 (2015).
doi: 10.1016/j.jmarsys.2015.06.002
Valencia, V. et al. Long-term evolution of the stratification, winter mixing and θ-S signature of upper water masses in the southeastern Bay of Biscay. Cont. Shelf Res 181, 124–134 (2019).
doi: 10.1016/j.csr.2019.05.010
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).
pubmed: 32631888 doi: 10.1126/science.aaz3658
Petitgas, P. et al. Impacts of climate change on the complex life cycles of fish. Fish. Oceanogr. 22, 121–139 (2013).
doi: 10.1111/fog.12010
Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).
doi: 10.1111/j.1365-2486.2008.01823.x
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
doi: 10.1038/s41558-019-0412-1
Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30 (2013).
pubmed: 22686347 doi: 10.1111/j.1469-185X.2012.00235.x
Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).
doi: 10.1016/j.gloenvcha.2014.03.009
Bates, A. E., Stuart-Smith, R. D., Barrett, N. S. & Edgar, G. J. Biological interactions both facilitate and resist climate-related functional change in temperate reef communities. Proc. R. Soc. B: Biol. Sci. 284, 20170484–20170484 (2017).
doi: 10.1098/rspb.2017.0484
Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).
pubmed: 23676754 doi: 10.1038/nature12156
Vila-Gispert, A., Moreno-Amich, R. & García-Berthou, E. Gradients of life-history variation: an intercontinental comparison of fishes. Rev. Fish. Biol. Fish. 12, 417–427 (2002).
doi: 10.1023/A:1025352026974
Chust, G., Taboada, F. G., Alvarez, P. & Ibaibarriaga, L. Species acclimatization pathways: latitudinal shifts and timing adjustments to track ocean warming. Ecol. Indic. 146, 109752 (2023).
doi: 10.1016/j.ecolind.2022.109752
Hyndes, G. A. et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–948 (2016).
pubmed: 28533562 pmcid: 5421442 doi: 10.1093/biosci/biw111
Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70, 377–396 (2002).
Bosch, N. E. et al. Persistent thermally driven shift in the functional trait structure of herbivorous fishes: Evidence of top-down control on the rebound potential of temperate seaweed forests? Glob. Change Biol. 28, 2296–2311 (2022).
doi: 10.1111/gcb.16070
Van Beveren, E. et al. The fisheries history of small pelagics in the Northern Mediterranean. ICES J. Mar. Sci. 73, 1474–1484 (2016).
doi: 10.1093/icesjms/fsw023
Lindegren, M. & Eero, M. Threshold-dependent climate effects and high mortality limit recruitment and recovery of the Kattegat cod. Mar. Ecol. Prog. Ser. 490, 223–232 (2013).
doi: 10.3354/meps10437
Coll, M., Albo-Puigserver, M., Navarro, J., Palomera, I. & Dambacher, J. Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 617-618, 277–294 (2019).
doi: 10.3354/meps12591
Auber, A., Gohin, F., Goascoz, N. & Schlaich, I. Decline of cold-water fish species in the Bay of Somme (English Channel, France) in response to ocean warming. Estuar. Coast Shelf Sci. 189, 189–202 (2017).
doi: 10.1016/j.ecss.2017.03.010
Quinn, T. P. A review of homing and straying of wild and hatchery-produced salmon. Fish. Res. 18, 29–44 (1993).
doi: 10.1016/0165-7836(93)90038-9
Lin, H.-Y., Bush, A., Linke, S., Possingham, H. P. & Brown, C. J. Climate change decouples marine and freshwater habitats of a threatened migratory fish. Divers Distrib. 23, 751–760 (2017).
doi: 10.1111/ddi.12570
Benedetti-Cecchi, L. et al. Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Mar. Ecol. Prog. Ser. 214, 137–150 (2001).
doi: 10.3354/meps214137
Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F. & Hawkins, S. J. The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J. Exp. Mar. Biol. Ecol. 267, 89–106 (2002).
doi: 10.1016/S0022-0981(01)00361-6
Givan, O., Edelist, D., Sonin, O. & Belmaker, J. Thermal affinity as the dominant factor changing Mediterranean fish abundances. Glob. Change Biol. 24, e80–e89 (2018).
doi: 10.1111/gcb.13835
Rilov, G., Peleg, O., Guy-Haim, T. & Yeruham, E. Community dynamics and ecological shifts on Mediterranean vermetid reefs. Mar. Environ. Res 160, 105045 (2020).
pubmed: 32827846 doi: 10.1016/j.marenvres.2020.105045
Rilov, G. Multi-species collapses at the warm edge of a warming sea. Sci. Rep. 6, 36897 (2016).
pubmed: 27853237 pmcid: 5113072 doi: 10.1038/srep36897
Rilov, G., Klein, L., Iluz, D., Dubinsky, Z. & Guy-Haim, T. Last snail standing? superior thermal resilience of an alien tropical intertidal gastropod over natives in an ocean-warming hotspot. Biol. Invasions 24, 3703–3719 (2022).
doi: 10.1007/s10530-022-02871-x
Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. 44, 123–195 (2006).
Cebrian, E. & Rodríguez-Prieto, C. Marine invasion in the Mediterranean Sea: the role of abiotic factors when there is no biological resistance. PLoS ONE 7, e31135 (2012).
pubmed: 22363565 pmcid: 3283607 doi: 10.1371/journal.pone.0031135
Gómez-Gras, D. et al. Climate change transforms the functional identity of Mediterranean coralligenous assemblages. Ecol. Lett. 24, 1038–1051 (2021).
pubmed: 33728823 pmcid: 8252474 doi: 10.1111/ele.13718
Gómez-Gras, D. et al. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B: Biol. Sci. 288, 20212384 (2021).
doi: 10.1098/rspb.2021.2384
Villarino, E. et al. Response of copepod communities to ocean warming in three time-series across the North Atlantic and Mediterranean Sea. Mar. Ecol. Prog. Ser. 636, 47–61 (2020).
doi: 10.3354/meps13209
Zuur A. F., Ieno E. N., Walker N. J. Mixed Effects Models And Extensions In Ecology With R. (Springer Science, 2009).
Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Prog. Oceanogr. 137, 498–512 (2015).
doi: 10.1016/j.pocean.2015.04.023
Tamburello, L., Bulleri, F., Bertocci, I., Maggi, E. & Benedetti-Cecchi, L. Reddened seascapes: experimentally induced shifts in 1/f spectra of spatial variability in rocky intertidal assemblages. Ecology 94, 1102–1111 (2013).
pubmed: 23858650 doi: 10.1890/12-1293.1
Borja, Á. et al. ‘The past is the future of the present’: learning from long-time series of marine monitoring. Sci. Total Environ. 566–567, 698–711 (2016).
pubmed: 27239713 doi: 10.1016/j.scitotenv.2016.05.111
Josefson, A. & Rytter, D. Danish Benthic Marine Monitoring Data from ODAM. Department of Bioscience - AU, Denmark. https://ipt.vliz.be/eurobis/resource?r=danishbenthicmonitoring . (2015).
Beukema, J. J., Flach, E. C., Dekker, R. & Starink, M. A long-term study of the recovery of the macrozoobenthos on large defaunated plots on a tidal flat in the Wadden Sea. J. Sea Res 42, 235–254 (1999).
doi: 10.1016/S1385-1101(99)00027-1
Spedicato, M. T. et al. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83, 9–20 (2019).
doi: 10.3989/scimar.04915.11X
Edelist, D., Sonin, O., Golani, D., Rilov, G. & Spanier, E. Spatiotemporal patterns of catch and discards of the Israeli Mediterranean trawl fishery in the early 1990s: ecological and conservation perspectives. Sci. Mar. 75, 641–652 (2011).
doi: 10.3989/scimar.2011.75n4641
DATRAS-ICES. ICES Database on Trawl Surveys (DATRAS). https://datras.ices.dk . (ICES, 2023).
van Leeuwen, A., van der Veer, H. & Witte, J. I. J. NIOZ fyke programme Stuifdijk. V2 edn. NIOZ (2023).
Chevillot, X. et al. Toward a phenological mismatch in estuarine pelagic food web? PLoS ONE 12, e0173752 (2017).
pubmed: 28355281 pmcid: 5371289 doi: 10.1371/journal.pone.0173752
Trimoreau, E. et al. A quantitative estimate of the function of soft-bottom sheltered coastal areas as essential flatfish nursery habitat. Estuar. Coast Shelf Sci. 133, 193–205 (2013).
doi: 10.1016/j.ecss.2013.08.027
Uriarte, A. & Borja, A. Assessing fish quality status in transitional waters, within the European Water Framework Directive: setting boundary classes and responding to anthropogenic pressures. Estuar. Coast Shelf Sci. 82, 214–224 (2009).
doi: 10.1016/j.ecss.2009.01.008
R-Core-Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2014).
Mudelsee, M. Trend analysis of climate time series: a review of methods. Earth-Sci. Rev. 190, 310–322 (2019).
doi: 10.1016/j.earscirev.2018.12.005
Burnham, K. P., Anderson D. R. Model Selection And Multi-model Inference: A Practical Information-theoretic Approach (Springer, 2002).
Chambers, J. M. Statistical Models in S (eds Chambers J. M., Hastie T. J.) (Wadsworth & Brooks/Cole, 1992).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
Chust, G. et al. Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas. Zenodo ( https://doi.org/10.5281/zenodo.10708267 ) (2024).

Auteurs

Guillem Chust (G)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain. gchust@azti.es.

Ernesto Villarino (E)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.
Oregon State University, College of Earth, Ocean and Atmospheric Science, Corvallis, USA.

Matthew McLean (M)

Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA.

Nova Mieszkowska (N)

Marine Biological Association, Citadel hill, Plymouth, Devon, PL1 2PB, UK.
University of Liverpool, Liverpool, UK.

Lisandro Benedetti-Cecchi (L)

Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.

Fabio Bulleri (F)

Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.

Chiara Ravaglioli (C)

Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.

Angel Borja (A)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.

Iñigo Muxika (I)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.

José A Fernandes-Salvador (JA)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.

Leire Ibaibarriaga (L)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.

Ainhize Uriarte (A)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.

Marta Revilla (M)

AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.

Fernando Villate (F)

Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Spain.
Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain.

Arantza Iriarte (A)

Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain.
Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain.

Ibon Uriarte (I)

Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain.
Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain.

Soultana Zervoudaki (S)

Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece.

Jacob Carstensen (J)

Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.

Paul J Somerfield (PJ)

Plymouth Marine Laboratory, Plymouth, UK.
University of Plymouth, Plymouth, UK.

Ana M Queirós (AM)

Plymouth Marine Laboratory, Plymouth, UK.
University of Exeter, Exeter, UK.

Andrea J McEvoy (AJ)

Plymouth Marine Laboratory, Plymouth, UK.

Arnaud Auber (A)

IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, 150 quai Gambetta, BP699, 62321, Boulogne-sur-Mer, France.

Manuel Hidalgo (M)

Spanish Institute of Oceanography (IEO, CSIC), Balearic Oceanographic Center (COB), Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n, 07015, Palma, Spain.

Marta Coll (M)

Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain.

Joaquim Garrabou (J)

Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain.

Daniel Gómez-Gras (D)

Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawaii, USA.
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain.
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.

Cristina Linares (C)

Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain.
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.

Francisco Ramírez (F)

Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain.

Núria Margarit (N)

Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain.

Mario Lepage (M)

INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France.

Chloé Dambrine (C)

INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France.

Jérémy Lobry (J)

INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France.

Myron A Peck (MA)

Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands.

Paula de la Barra (P)

Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands.

Anieke van Leeuwen (A)

Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands.

Gil Rilov (G)

National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel.

Erez Yeruham (E)

National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel.

Anik Brind'Amour (A)

Ecosystem Dynamics and Sustainability (UMR DECOD), IFREMER, Institut Agro, INRAE, Rue de l'Ile d'Yeu, Nantes, France.

Martin Lindegren (M)

Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs, Lyngby, Denmark.

Classifications MeSH