TYROBP/DAP12 knockout in Huntington's disease Q175 mice cell-autonomously decreases microglial expression of disease-associated genes and non-cell-autonomously mitigates astrogliosis and motor deterioration.
Complement
Huntington’s disease
Microglia
Multi-omics
Neuroinflammation
Q175
TYROBP
Journal
Journal of neuroinflammation
ISSN: 1742-2094
Titre abrégé: J Neuroinflammation
Pays: England
ID NLM: 101222974
Informations de publication
Date de publication:
08 Mar 2024
08 Mar 2024
Historique:
received:
15
10
2023
accepted:
19
02
2024
medline:
9
3
2024
pubmed:
9
3
2024
entrez:
8
3
2024
Statut:
epublish
Résumé
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.
Identifiants
pubmed: 38459557
doi: 10.1186/s12974-024-03052-4
pii: 10.1186/s12974-024-03052-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
66Subventions
Organisme : NINDS NIH HHS
ID : NS100529
Pays : United States
Organisme : NINDS NIH HHS
ID : NS100529
Pays : United States
Organisme : NINDS NIH HHS
ID : NS100529
Pays : United States
Organisme : NINDS NIH HHS
ID : NS100529
Pays : United States
Organisme : NINDS NIH HHS
ID : NS100529
Pays : United States
Organisme : NINDS NIH HHS
ID : NS100529
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG046170
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG046170
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG046170
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG046170
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG046170
Pays : United States
Organisme : NIH HHS
ID : 1S10 OD028654
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83.
doi: 10.1016/0092-8674(93)90585-E
Kassubek J, Bernhard Landwehrmeyer G, Ecker D, Juengling FD, Muche R, Schuller S, Weindl A, Peinemann A. Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. NeuroReport. 2004;15:363–5.
pubmed: 15076769
doi: 10.1097/00001756-200402090-00030
Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57:369–84.
pubmed: 9596408
doi: 10.1097/00005072-199805000-00001
Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem. 2010;113:1073–91.
pubmed: 20236390
pmcid: 2890032
doi: 10.1111/j.1471-4159.2010.06672.x
Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology. 2003;60:1615–20.
pubmed: 12771251
doi: 10.1212/01.WNL.0000065888.88988.6E
Creus-Muncunill J, Ehrlich ME. Cell-autonomous and non-cell-autonomous pathogenic mechanisms in Huntington’s disease: insights from in vitro and in vivo models. Neurotherapeutics. 2019;16:957–78.
pubmed: 31529216
pmcid: 6985401
doi: 10.1007/s13311-019-00782-9
Yang HM, Yang S, Huang SS, Tang BS, Guo JF. Microglial activation in the pathogenesis of Huntington’s disease. Front Aging Neurosci. 2017;9:193.
pubmed: 28674491
pmcid: 5474461
doi: 10.3389/fnagi.2017.00193
Jansen AH, van Hal M, Op den Kelder IC, Meier RT, de Ruiter AA, Schut MH, Smith DL, Grit C, Brouwer N, Kamphuis W, et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia. 2017;65:50–61.
pubmed: 27615381
doi: 10.1002/glia.23050
Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66:1638–43.
pubmed: 16769933
doi: 10.1212/01.wnl.0000222734.56412.17
Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60:161–72.
pubmed: 11273004
doi: 10.1093/jnen/60.2.161
Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130:1759–66.
pubmed: 17400599
doi: 10.1093/brain/awm044
Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205:1869–77.
pubmed: 18625748
pmcid: 2525598
doi: 10.1084/jem.20080178
Politis M, Lahiri N, Niccolini F, Su P, Wu K, Giannetti P, Scahill RI, Turkheimer FE, Tabrizi SJ, Piccini P. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiol Dis. 2015;83:115–21.
pubmed: 26297319
doi: 10.1016/j.nbd.2015.08.011
Silvestroni A, Faull RL, Strand AD, Moller T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. NeuroReport. 2009;20:1098–103.
pubmed: 19590393
doi: 10.1097/WNR.0b013e32832e34ee
Agus F, Crespo D, Myers RH, Labadorf A. The caudate nucleus undergoes dramatic and unique transcriptional changes in human prodromal Huntington’s disease brain. BMC Med Genomics. 2019;12:137.
pubmed: 31619230
pmcid: 6796419
doi: 10.1186/s12920-019-0581-9
Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B, Schmitt A, Gebicke-Haerter PJ, Falkai P, Grunblatt E, et al. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna). 2015;122:1055–68.
pubmed: 25119539
doi: 10.1007/s00702-014-1293-0
Labadorf A, Hoss AG, Lagomarsino V, Latourelle JC, Hadzi TC, Bregu J, MacDonald ME, Gusella JF, Chen JF, Akbarian S, et al. RNA sequence analysis of human Huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS ONE. 2015;10: e0143563.
pubmed: 26636579
pmcid: 4670106
doi: 10.1371/journal.pone.0143563
Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, Lu XH, Ramos EM, El-Zein K, Zhao Y, et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci. 2016;19:623–33.
pubmed: 26900923
pmcid: 5984042
doi: 10.1038/nn.4256
Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C, Cattaneo E, Gage FH, Cleveland DW, Glass CK. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci. 2014;17:513–21.
pubmed: 24584051
pmcid: 4113004
doi: 10.1038/nn.3668
Petkau TL, Hill A, Connolly C, Lu G, Wagner P, Kosior N, Blanco J, Leavitt BR. Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington’s disease-like phenotype in BACHD mice. Hum Mol Genet. 2019;28:1661–70.
pubmed: 30624705
doi: 10.1093/hmg/ddz009
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain. 2020;143:266–88.
pubmed: 31848580
doi: 10.1093/brain/awz363
Griciuc A, Tanzi RE. The role of innate immune genes in Alzheimer’s disease. Curr Opin Neurol. 2021;34:228–36.
pubmed: 33560670
pmcid: 7954128
doi: 10.1097/WCO.0000000000000911
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(1276–1290): e1217.
Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.
pubmed: 23622250
pmcid: 3677161
doi: 10.1016/j.cell.2013.03.030
Mocsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol. 2006;7:1326–33.
pubmed: 17086186
pmcid: 4698344
doi: 10.1038/ni1407
Takaki R, Watson SR, Lanier LL. DAP12: an adapter protein with dual functionality. Immunol Rev. 2006;214:118–29.
pubmed: 17100880
doi: 10.1111/j.1600-065X.2006.00466.x
Turnbull IR, Colonna M. Activating and inhibitory functions of DAP12. Nat Rev Immunol. 2007;7:155–61.
pubmed: 17220916
doi: 10.1038/nri2014
Haure-Mirande JV, Wang M, Audrain M, Fanutza T, Kim SH, Heja S, Readhead B, Dudley JT, Blitzer RD, Schadt EE, et al. Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in cerebral Abeta amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Abeta burden. Mol Psychiatry. 2019;24:431–46.
pubmed: 30283032
doi: 10.1038/s41380-018-0255-6
Audrain M, Haure-Mirande JV, Wang M, Kim SH, Fanutza T, Chakrabarty P, Fraser P, St George-Hyslop PH, Golde TE, Blitzer RD, et al. Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Mol Psychiatry. 2019;24:1383–97.
pubmed: 30283031
doi: 10.1038/s41380-018-0258-3
Haure-Mirande JV, Audrain M, Fanutza T, Kim SH, Klein WL, Glabe C, Readhead B, Dudley JT, Blitzer RD, Wang M, et al. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol. 2017;134:769–88.
pubmed: 28612290
pmcid: 5645450
doi: 10.1007/s00401-017-1737-3
Elorza A, Marquez Y, Cabrera JR, Sanchez-Trincado JL, Santos-Galindo M, Hernandez IH, Pico S, Diaz-Hernandez JI, Garcia-Escudero R, Irimia M, Lucas JJ. Huntington’s disease-specific mis-splicing unveils key effector genes and altered splicing factors. Brain. 2021;144:2009–23.
pubmed: 33725094
pmcid: 8370404
doi: 10.1093/brain/awab087
Labadorf A, Hoss AG, Lagomarsino V, Latourelle JC, Hadzi TC, Bregu J, MacDonald ME, Gusella JF, Chen JF, Akbarian S, et al. Correction: RNA sequence analysis of human Huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS ONE. 2016;11: e0160295.
pubmed: 27454300
pmcid: 4959683
doi: 10.1371/journal.pone.0160295
Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP, Adorjan I, Menon V, Goldman JE. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun. 2020;8:19.
pubmed: 32070434
pmcid: 7029580
doi: 10.1186/s40478-020-0880-6
Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet. 2006;15:965–77.
pubmed: 16467349
doi: 10.1093/hmg/ddl013
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90-97.
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Bakker AB, Hoek RM, Cerwenka A, Blom B, Lucian L, McNeil T, Murray R, Phillips LH, Sedgwick JD, Lanier LL. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity. 2000;13:345–53.
pubmed: 11021532
doi: 10.1016/S1074-7613(00)00034-0
Young K, Morrison H. Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Vis Exp. 2018.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Tarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS ONE. 2013;8: e79217.
pubmed: 24260172
pmcid: 3829842
doi: 10.1371/journal.pone.0079217
Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. 2012;12:1111–21.
pubmed: 22577012
pmcid: 3918884
doi: 10.1002/pmic.201100463
Bruderer R, Bernhardt OM, Gandhi T, Xuan Y, Sondermann J, Schmidt M, Gomez-Varela D, Reiter L. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics. 2017;16:2296–309.
pubmed: 29070702
pmcid: 5724188
doi: 10.1074/mcp.RA117.000314
Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B (Statistical Methodology). 2002;63:479–98.
doi: 10.1111/1467-9868.00346
Rohart F, Gautier B, Singh A, Le Cao KA. mixOmics: An R package for ’omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13: e1005752.
pubmed: 29099853
pmcid: 5687754
doi: 10.1371/journal.pcbi.1005752
Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 2011;39:D712-717.
pubmed: 21071422
doi: 10.1093/nar/gkq1156
Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res. 2009;37:D623-628.
pubmed: 18940869
doi: 10.1093/nar/gkn698
Mattei D, Ivanov A, van Oostrum M, Pantelyushin S, Richetto J, Mueller F, Beffinger M, Schellhammer L, Vom Berg J, Wollscheid B, et al. Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int J Mol Sci. 2020; 21.
Cirnaru MD, Creus-Muncunill J, Nelson S, Lewis TB, Watson J, Ellerby LM, Gonzalez-Alegre P, Ehrlich ME. Striatal cholinergic dysregulation after neonatal decrease in X-linked dystonia Parkinsonism-related TAF1 isoforms. Mov Disord. 2021;36:2780–94.
pubmed: 34403156
doi: 10.1002/mds.28750
Creus-Muncunill J, Badillos-Rodriguez R, Garcia-Forn M, Masana M, Garcia-Diaz Barriga G, Guisado-Corcoll A, Alberch J, Malagelada C, Delgado-Garcia JM, Gruart A, Perez-Navarro E. Increased translation as a novel pathogenic mechanism in Huntington’s disease. Brain. 2019;142:3158–75.
pubmed: 31365052
doi: 10.1093/brain/awz230
Konishi H, Kiyama H. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front Cell Neurosci. 2018;12:206.
pubmed: 30127720
pmcid: 6087757
doi: 10.3389/fncel.2018.00206
Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, Bolte AC, Lammert CR, Kulas JA, Ulland TK, Lukens JR. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell. 2022;185(4135–4152): e4122.
Ennerfelt H, Lukens JR. Microglia rely on SYK signalling to mount neuroprotective responses in models of Alzheimer’s disease and multiple sclerosis. Clin Transl Med. 2023;13: e1178.
pubmed: 36629045
pmcid: 9832418
doi: 10.1002/ctm2.1178
Wang S, Colonna M. The microglial immunoreceptor tyrosine-based motif-Syk signaling pathway is a promising target of immunotherapy for Alzheimer’s disease. Clin Transl Med. 2023;13: e1200.
pubmed: 36772935
pmcid: 9920003
doi: 10.1002/ctm2.1200
Wang S, Sudan R, Peng V, Zhou Y, Du S, Yuede CM, Lei T, Hou J, Cai Z, Cella M, et al. TREM2 drives microglia response to amyloid-beta via SYK-dependent and -independent pathways. Cell. 2022;185(4153–4169): e4119.
Upadhayay S, Jamwal S, Kumar P. Animal models of Huntington’s disease and their applicability to novel drug discovery and development. Expert Opin Drug Discov. 2023;18:527–38.
pubmed: 37042034
doi: 10.1080/17460441.2023.2201493
Lier J, Streit WJ, Bechmann I. Beyond activation: characterizing microglial functional phenotypes. Cells. 2021; 10.
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49:1422–34.
pubmed: 24395130
pmcid: 4012154
doi: 10.1007/s12035-013-8620-6
Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macrosialin: not just a histochemical marker. Lab Invest. 2017;97:4–13.
pubmed: 27869795
doi: 10.1038/labinvest.2016.116
Kim A, Garcia-Garcia E, Straccia M, Comella-Bolla A, Miguez A, Masana M, Alberch J, Canals JM, Rodriguez MJ. Reduced fractalkine levels lead to striatal synaptic plasticity deficits in Huntington’s disease. Front Cell Neurosci. 2020;14:163.
pubmed: 32625064
pmcid: 7314984
doi: 10.3389/fncel.2020.00163
Savage JC, St-Pierre MK, Carrier M, El Hajj H, Novak SW, Sanchez MG, Cicchetti F, Tremblay ME. Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology. J Neuroinflamm. 2020;17:98.
doi: 10.1186/s12974-020-01782-9
Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016;36:128–34.
pubmed: 26745839
doi: 10.1016/j.conb.2015.12.004
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat Med. 2023;29:2866–84.
pubmed: 37814059
pmcid: 10667107
doi: 10.1038/s41591-023-02566-3
Cepeda C, Hurst RS, Calvert CR, Hernandez-Echeagaray E, Nguyen OK, Jocoy E, Christian LJ, Ariano MA, Levine MS. Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci. 2003;23:961–9.
pubmed: 12574425
pmcid: 6741903
doi: 10.1523/JNEUROSCI.23-03-00961.2003
Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, et al. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun. 2017;8:14405.
pubmed: 28194040
pmcid: 5316841
doi: 10.1038/ncomms14405
Puigdellivol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martin ED, Eipper BA, Alberch J, Gines S. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington’s disease. Hum Mol Genet. 2015;24:7265–85.
pubmed: 26464483
pmcid: 4664166
doi: 10.1093/hmg/ddv426
Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, Erreni M, Markicevic M, Starvaggi-Cucuzza C, Otero K, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018;48(979–991): e978.
Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 2015;36:605–13.
pubmed: 26431938
pmcid: 4841266
doi: 10.1016/j.it.2015.08.008
Ament SA, Pearl JR, Grindeland A, St Claire J, Earls JC, Kovalenko M, Gillis T, Mysore J, Gusella JF, Lee JM, et al. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington’s disease CAG knock-in mice across multiple genetic backgrounds. Hum Mol Genet. 2017;26:913–22.
pubmed: 28334820
pmcid: 6075528
doi: 10.1093/hmg/ddx006
Becanovic K, Pouladi MA, Lim RS, Kuhn A, Pavlidis P, Luthi-Carter R, Hayden MR, Leavitt BR. Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum Mol Genet. 2010;19:1438–52.
pubmed: 20089533
pmcid: 2846159
doi: 10.1093/hmg/ddq018
Brochier C, Gaillard MC, Diguet E, Caudy N, Dossat C, Segurens B, Wincker P, Roze E, Caboche J, Hantraye P, et al. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genomics. 2008;33:170–9.
pubmed: 18252803
doi: 10.1152/physiolgenomics.00125.2007
Hervas-Corpion I, Guiretti D, Alcaraz-Iborra M, Olivares R, Campos-Caro A, Barco A, Valor LM. Early alteration of epigenetic-related transcription in Huntington’s disease mouse models. Sci Rep. 2018;8:9925.
pubmed: 29967375
pmcid: 6028428
doi: 10.1038/s41598-018-28185-4
Langfelder P, Gao F, Wang N, Howland D, Kwak S, Vogt TF, Aaronson JS, Rosinski J, Coppola G, Horvath S, Yang XW. MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice. PLoS ONE. 2018;13: e0190550.
pubmed: 29324753
pmcid: 5764268
doi: 10.1371/journal.pone.0190550
Le Gras S, Keime C, Anthony A, Lotz C, De Longprez L, Brouillet E, Cassel JC, Boutillier AL, Merienne K. Altered enhancer transcription underlies Huntington’s disease striatal transcriptional signature. Sci Rep. 2017;7:42875.
pubmed: 28225006
pmcid: 5320509
doi: 10.1038/srep42875
Novati A, Hentrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Deglon N, Nguyen HP, Schulze-Hentrich JM. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep. 2018;8:5803.
pubmed: 29643462
pmcid: 5895842
doi: 10.1038/s41598-018-24243-z
Vuono R, Kouli A, Legault EM, Chagnon L, Allinson KS, La Spada A, Network RIotEHsD, Biunno I, Barker RA, Drouin-Ouellet J. Association between toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants and clinical progression of Huntington’s disease. Mov Disord. 2020;35:401–8.
pubmed: 31724242
doi: 10.1002/mds.27911
Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 2017;8:291.
pubmed: 28827567
pmcid: 5566333
doi: 10.1038/s41467-017-00249-5
Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(O111): 016717.
Schilling B, Gibson BW, Hunter CL. Generation of high-quality SWATH((R)) acquisition data for label-free quantitative proteomics studies using TripleTOF((R)) mass spectrometers. Methods Mol Biol. 2017;1550:223–33.
pubmed: 28188533
pmcid: 5669615
doi: 10.1007/978-1-4939-6747-6_16
Tennstaedt A, Popsel S, Truebestein L, Hauske P, Brockmann A, Schmidt N, Irle I, Sacca B, Niemeyer CM, Brandt R, et al. Human high temperature requirement serine protease A1 (HTRA1) degrades tau protein aggregates. J Biol Chem. 2012;287:20931–41.
pubmed: 22535953
pmcid: 3375517
doi: 10.1074/jbc.M111.316232
Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci. 2021;24:1475–87.
pubmed: 34413515
doi: 10.1038/s41593-021-00905-6
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol. 2023;19:395–409.
pubmed: 37308616
doi: 10.1038/s41582-023-00822-1
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.
pubmed: 28099414
pmcid: 5404890
doi: 10.1038/nature21029
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.
pubmed: 22553043
pmcid: 3480225
doi: 10.1523/JNEUROSCI.6221-11.2012
Merienne N, Meunier C, Schneider A, Seguin J, Nair SS, Rocher AB, Le Gras S, Keime C, Faull R, Pellerin L, et al. Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures. Cell Rep. 2019;26(2477–2493): e2479.
Lee H, Fenster RJ, Pineda SS, Gibbs WS, Mohammadi S, Davila-Velderrain J, Garcia FJ, Therrien M, Novis HS, Gao F, et al. Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation. Neuron. 2020;107:891-908 e898.
pubmed: 32681824
pmcid: 7486278
doi: 10.1016/j.neuron.2020.06.021
Benraiss A, Mariani JN, Osipovitch M, Cornwell A, Windrem MS, Villanueva CB, Chandler-Militello D, Goldman SA. Cell-intrinsic glial pathology is conserved across human and murine models of Huntington’s disease. Cell Rep. 2021;36: 109308.
pubmed: 34233199
doi: 10.1016/j.celrep.2021.109308
Seong IS, Woda JM, Song JJ, Lloret A, Abeyrathne PD, Woo CJ, Gregory G, Lee JM, Wheeler VC, Walz T, et al. Huntingtin facilitates polycomb repressive complex 2. Hum Mol Genet. 2010;19:573–83.
pubmed: 19933700
doi: 10.1093/hmg/ddp524
Laugesen A, Hojfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 2019;74:8–18.
pubmed: 30951652
pmcid: 6452890
doi: 10.1016/j.molcel.2019.03.011
Ayata P, Badimon A, Strasburger HJ, Duff MK, Montgomery SE, Loh YE, Ebert A, Pimenova AA, Ramirez BR, Chan AT, et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci. 2018;21:1049–60.
pubmed: 30038282
pmcid: 6090564
doi: 10.1038/s41593-018-0192-3
Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim Biophys Acta. 2016;1862:339–51.
pubmed: 26524636
doi: 10.1016/j.bbadis.2015.10.026
Zhang H, Zhang T, Wang D, Jiang Y, Guo T, Zhang Y, Zhu F, Han K, Mu L, Wang G. IFN-gamma regulates the transformation of microglia into dendritic-like cells via the ERK/c-myc signaling pathway during cerebral ischemia/reperfusion in mice. Neurochem Int. 2020;141: 104860.
pubmed: 33022312
doi: 10.1016/j.neuint.2020.104860
Chen MJ, Ramesha S, Weinstock LD, Gao T, Ping L, Xiao H, Dammer EB, Duong DD, Levey AI, Lah JJ, et al. Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer’s disease. J Neurosci Res. 2021;99:1704–21.
pubmed: 33729626
pmcid: 8919593
doi: 10.1002/jnr.24829
Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SSG. mGluR5 antagonism increases autophagy and prevents disease progression in the zQ175 mouse model of Huntington's disease. Sci Signal. 2017; 10.
Bowles KR, Jones L. Kinase signalling in Huntington’s disease. J Huntingtons Dis. 2014;3:89–123.
pubmed: 25062854
doi: 10.3233/JHD-140106
Sanchis A, Garcia-Gimeno MA, Canada-Martinez AJ, Sequedo MD, Millan JM, Sanz P, Vazquez-Manrique RP. Metformin treatment reduces motor and neuropsychiatric phenotypes in the zQ175 mouse model of Huntington disease. Exp Mol Med. 2019;51:1–16.
pubmed: 31165723
doi: 10.1038/s12276-019-0264-9
Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A microglial signature directing human aging and neurodegeneration-related gene networks. Front Neurosci. 2019;13:2.
pubmed: 30733664
pmcid: 6353788
doi: 10.3389/fnins.2019.00002
Mina E, van Roon-Mom W, Hettne K, van Zwet E, Goeman J, Neri C, P ACtH, Mons B, Roos M. Common disease signatures from gene expression analysis in Huntington's disease human blood and brain. Orphanet J Rare Dis. 2016; 11:97.
Neueder A, Bates GP. A common gene expression signature in Huntington’s disease patient brain regions. BMC Med Genomics. 2014;7:60.
pubmed: 25358814
pmcid: 4219025
doi: 10.1186/s12920-014-0060-2
Scarpa JR, Jiang P, Losic B, Readhead B, Gao VD, Dudley JT, Vitaterna MH, Turek FW, Kasarskis A. Systems genetic analyses highlight a TGFbeta-FOXO3 dependent striatal astrocyte network conserved across species and associated with stress, sleep, and Huntington’s disease. PLoS Genet. 2016;12: e1006137.
pubmed: 27390852
pmcid: 4938493
doi: 10.1371/journal.pgen.1006137
Ahmadi A, Gispert JD, Navarro A, Vilor-Tejedor N, Sadeghi I. Single-cell transcriptional changes in neurodegenerative diseases. Neuroscience. 2021;479:192–205.
pubmed: 34748859
doi: 10.1016/j.neuroscience.2021.10.025
Ofengeim D, Giagtzoglou N, Huh D, Zou C, Yuan J. Single-cell RNA sequencing: unraveling the brain one cell at a time. Trends Mol Med. 2017;23:563–76.
pubmed: 28501348
pmcid: 5531055
doi: 10.1016/j.molmed.2017.04.006
Kraft AD, Kaltenbach LS, Lo DC, Harry GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging. 2012;33(621):e617-633.
Singhrao SK, Neal JW, Morgan BP, Gasque P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol. 1999;159:362–76.
pubmed: 10506508
doi: 10.1006/exnr.1999.7170
Fei M, Wang H, Zhou M, Deng C, Zhang L, Han Y. Podoplanin influences the inflammatory phenotypes and mobility of microglia in traumatic brain injury. Biochem Biophys Res Commun. 2020;523:361–7.
pubmed: 31866008
doi: 10.1016/j.bbrc.2019.12.003
Liu N, Zhuang Y, Zhou Z, Zhao J, Chen Q, Zheng J. NF-kappaB dependent up-regulation of TRPC6 by Abeta in BV-2 microglia cells increases COX-2 expression and contributes to hippocampus neuron damage. Neurosci Lett. 2017;651:1–8.
pubmed: 28458019
doi: 10.1016/j.neulet.2017.04.056
Yang CS, Yuk JM, Shin DM, Kang J, Lee SJ, Jo EK. Secretory phospholipase A2 plays an essential role in microglial inflammatory responses to Mycobacterium tuberculosis. Glia. 2009;57:1091–103.
pubmed: 19115385
doi: 10.1002/glia.20832
Kano SI, Choi EY, Dohi E, Agarwal S, Chang DJ, Wilson AM, Lo BD, Rose IVL, Gonzalez S, Imai T, Sawa A. Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci Signal. 2019; 12.
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin SH, Kim JS, et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat Neurosci. 2023;26:406–15.
pubmed: 36747024
pmcid: 9991912
doi: 10.1038/s41593-023-01257-z
Salem L, Saleh N, Desamericq G, Youssov K, Dolbeau G, Cleret L, Bourhis ML, Azulay JP, Krystkowiak P, Verny C, et al. Insulin-like growth factor-1 but not insulin predicts cognitive decline in Huntington’s disease. PLoS ONE. 2016;11: e0162890.
pubmed: 27627435
pmcid: 5023180
doi: 10.1371/journal.pone.0162890
Festa BP, Siddiqi FH, Jimenez-Sanchez M, Rubinsztein DC. Microglial cytokines poison neuronal autophagy via CCR5, a druggable target. Autophagy. 2023;1–3.
Herring A, Kurapati NK, Krebs S, Grammon N, Scholz LM, Voss G, Miah MR, Budny V, Mairinger F, Haase K, et al. Genetic knockdown of Klk8 has sex-specific multi-targeted therapeutic effects on Alzheimer’s pathology in mice. Neuropathol Appl Neurobiol. 2021;47:611–24.
pubmed: 33341972
doi: 10.1111/nan.12687
Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernandez-Otero M, Cao Y, Zeine A, Sefah A, Zheng K, et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell. 2021;184:4048-4063 e4032.
pubmed: 34233165
pmcid: 9122259
doi: 10.1016/j.cell.2021.06.018
Kuhn SA, van Landeghem FK, Zacharias R, Farber K, Rappert A, Pavlovic S, Hoffmann A, Nolte C, Kettenmann H. Microglia express GABA(B) receptors to modulate interleukin release. Mol Cell Neurosci. 2004;25:312–22.
pubmed: 15019947
doi: 10.1016/j.mcn.2003.10.023
Lee M, Schwab C, McGeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia. 2011;59:152–65.
pubmed: 21046567
doi: 10.1002/glia.21087
Francelle L, Galvan L, Brouillet E. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s disease. Front Cell Neurosci. 2014;8:295.
pubmed: 25309327
pmcid: 4176035
doi: 10.3389/fncel.2014.00295
Liu EA, Schultz ML, Mochida C, Chung C, Paulson HL, Lieberman AP. Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain. JCI Insight. 2020; 5.
Inoue M, Yamada J, Aomatsu-Kikuchi E, Satoh K, Kondo H, Ishisaki A, Chosa N. SCRG1 suppresses LPS-induced CCL22 production through ERK1/2 activation in mouse macrophage Raw264.7 cells. Mol Med Rep. 2017;15:4069–76.
pubmed: 28440453
pmcid: 5436279
doi: 10.3892/mmr.2017.6492