Novel meriolin derivatives activate the mitochondrial apoptosis pathway in the presence of antiapoptotic Bcl-2.
Journal
Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035
Informations de publication
Date de publication:
09 Mar 2024
09 Mar 2024
Historique:
received:
31
10
2023
accepted:
29
02
2024
revised:
21
02
2024
medline:
10
3
2024
pubmed:
10
3
2024
entrez:
9
3
2024
Statut:
epublish
Résumé
Meriolin derivatives represent a new class of kinase inhibitors with a pronounced cytotoxic potential. Here, we investigated a newly synthesized meriolin derivative (termed meriolin 16) that displayed a strong apoptotic potential in Jurkat leukemia and Ramos lymphoma cells. Meriolin 16 induced apoptosis in rapid kinetics (within 2-3 h) and more potently (IC
Identifiants
pubmed: 38461295
doi: 10.1038/s41420-024-01901-y
pii: 10.1038/s41420-024-01901-y
doi:
Types de publication
Journal Article
Langues
eng
Pagination
125Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2158
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2578
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2158
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2578
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2158
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2158
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2578
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : GRK2158
Informations de copyright
© 2024. The Author(s).
Références
Drießen D, Stuhldreier F, Frank A, Stark H, Wesselborg S, Stork B, et al. Novel meriolin derivatives as rapid apoptosis inducers. Bioorg Med Chem. 2019;27:3463–8.
pubmed: 31248707
doi: 10.1016/j.bmc.2019.06.029
Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.
pubmed: 19104514
doi: 10.1038/nrc2559
Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;125:1780–9.
pubmed: 25932675
pmcid: 4463189
doi: 10.1172/JCI76094
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021;11:1913–35.
pubmed: 34094661
pmcid: 8167670
Panagiotou E, Gomatou G, Trontzas IP, Syrigos N, Kotteas E. Cyclin-dependent kinase (CDK) inhibitors in solid tumors: a review of clinical trials. Clin Transl Oncol. 2022;24:161–92.
pubmed: 34363593
doi: 10.1007/s12094-021-02688-5
Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schioth HB. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov. 2021;20:839–61.
pubmed: 34354255
doi: 10.1038/s41573-021-00252-y
Bettayeb K, Tirado OM, Marionneau-Lambot S, Ferandin Y, Lozach O, Morris JC, et al. Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases. Cancer Res. 2007;67:8325–34.
pubmed: 17804748
doi: 10.1158/0008-5472.CAN-07-1826
Kruppa M, Müller TJJ. A survey on the synthesis of variolins, meridianins, and meriolins-naturally occurring marine (aza)indole alkaloids and their semisynthetic derivatives. Molecules. 2023;28:947.
pubmed: 36770618
pmcid: 9920529
doi: 10.3390/molecules28030947
Fresneda PM, Molina P, Bleda JA. Synthesis of the indole alkaloids meridianins from the tunicate Aplidium meridianum. Tetrahedron. 2001;57:2355–63.
doi: 10.1016/S0040-4020(01)00102-8
Echalier A, Bettayeb K, Ferandin Y, Lozach O, Clement M, Valette A, et al. Meriolins (3-(pyrimidin-4-yl)-7-azaindoles): synthesis, kinase inhibitory activity, cellular effects, and structure of a CDK2/cyclin A/meriolin complex. J Med Chem. 2008;51:737–51.
pubmed: 18232649
doi: 10.1021/jm700940h
Jarry M, Lecointre C, Malleval C, Desrues L, Schouft M-T, Lejoncour V, et al. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis. Neuro Oncol. 2014;16:1484–98.
pubmed: 24891448
pmcid: 4201071
doi: 10.1093/neuonc/nou102
Alexander A, Karakas C, Chen X, Carey JP, Yi M, Bondy M, et al. Cyclin E overexpression as a biomarker for combination treatment strategies in inflammatory breast cancer. Oncotarget. 2017;8:14897–911.
pubmed: 28107181
pmcid: 5362453
doi: 10.18632/oncotarget.14689
Akli S, Van Pelt CS, Bui T, Meijer L, Keyomarsi K. Cdk2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res. 2011;71:3377–86.
pubmed: 21385896
pmcid: 3085722
doi: 10.1158/0008-5472.CAN-10-4086
Mou J, Chen D, Deng Y. Inhibitors of cyclin-dependent kinase 1/2 for anticancer treatment. Med Chem. 2020;16:307–25.
pubmed: 31241436
doi: 10.2174/1573406415666190626113900
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev. 2013;113:6761–815.
pubmed: 23679846
doi: 10.1021/cr300410v
Lukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of cyclin-dependent kinases: types and their mechanism of action. Int J Mol Sci. 2021;22:2806.
pubmed: 33802080
pmcid: 8001317
doi: 10.3390/ijms22062806
Vogt D, Weber J, Ihlefeld K, Brüggerhoff A, Proschak E, Stark H. Design, synthesis and evaluation of 2-aminothiazole derivatives as sphingosine kinase inhibitors. Bioorg Med Chem. 2014;22:5354–67.
pubmed: 25150091
doi: 10.1016/j.bmc.2014.07.044
Wucherer-Plietker M, Merkul E, Müller TJJ, Esdar C, Knöchel T, Heinrich T, et al. Discovery of novel 7-azaindoles as PDK1 inhibitors. Bioorg Med Chem Lett. 2016;26:3073–80.
pubmed: 27217002
doi: 10.1016/j.bmcl.2016.05.005
Chashoo G, Singh U, Singh PP, Mondhe DM, Vishwakarma RA. A marine-based meriolin (3-pyrimidinylazaindole) derivative (4ab) targets PI3K/AKT/mTOR pathway inducing cell cycle arrest and apoptosis in Molt-4 cells. Clin Cancer Drugs. 2019;6:33–40.
doi: 10.2174/2212697X06666190509094514
Lukasik PM, Elabar S, Lam F, Shao H, Liu X, Abbas AY, et al. Synthesis and biological evaluation of imidazo[4,5-b]pyridine and 4-heteroaryl-pyrimidine derivatives as anti-cancer agents. Eur J Med Chem. 2012;57:311–22.
pubmed: 23085105
doi: 10.1016/j.ejmech.2012.09.034
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.
pubmed: 35022204
doi: 10.1158/2159-8290.CD-21-1059
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Drießen D, Biesen L, Müller TJJ. Sequentially catalyzed three-component Masuda-Suzuki-Sonogashira synthesis of fluorescent 2-Alkynyl-4-(7-azaindol-3-yl) pyrimidines: three palladium-catalyzed processes in a one-pot fashion. Synlett. 2021;32:491–6.
Tasch BOA, Antovic D, Merkul E, Müller TJJ. One‐pot synthesis of camalexins and 3, 3′‐biindoles by the Masuda Borylation–Suzuki arylation (MBSA) sequence. Eur J Org Chem. 2013;2013:4564–9.
doi: 10.1002/ejoc.201300133
Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apotosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–9.
pubmed: 1710634
doi: 10.1016/0022-1759(91)90198-O
Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282:11521–9.
pubmed: 17301055
doi: 10.1074/jbc.M607279200
Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci. 2012;125:5745–57.
pubmed: 23015593
pmcid: 4074216
doi: 10.1242/jcs.109769
DePinto W, Chu X-J, Yin X, Smith M, Packman K, Goelzer P, et al. In vitro and in vivo activity of R547: a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther. 2006;5:2644–58.
pubmed: 17121911
doi: 10.1158/1535-7163.MCT-06-0355
Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.
pubmed: 20965415
pmcid: 2988877
doi: 10.1016/j.molcel.2010.09.019
Kuo LJ, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. Vivo. 2008;22:305–9.
White D, Rafalska-Metcalf IU, Ivanov AV, Corsinotti A, Peng H, Lee S-C, et al. The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res. 2012;10:401–14.
pubmed: 22205726
doi: 10.1158/1541-7786.MCR-11-0134
White DE, Negorev D, Peng H, Ivanov AV, Maul GG, Rauscher IIIFJ. KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res. 2006;66:11594–9.
pubmed: 17178852
doi: 10.1158/0008-5472.CAN-06-4138
Vogler M, Walter HS, Dyer MJS. Targeting anti-apoptotic BCL2 family proteins in haematological malignancies - from pathogenesis to treatment. Br J Haematol. 2017;178:364–79.
pubmed: 28449207
doi: 10.1111/bjh.14684
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64.
pubmed: 31216460
pmcid: 6611727
doi: 10.1016/j.immuni.2019.05.020
Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:1–24.
doi: 10.1101/cshperspect.a006080
Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol. 1998;8:1001–8.
pubmed: 9740801
doi: 10.1016/S0960-9822(07)00420-4
Manns J, Daubrawa M, Driessen S, Paasch F, Hoffmann N, Löffler A, et al. Triggering of a novel intrinsic apoptosis pathway by the kinase inhibitor staurosporine: activation of caspase‐9 in the absence of Apaf‐1. FASEB J. 2011;25:3250–61.
pubmed: 21659556
doi: 10.1096/fj.10-177527
Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R, et al. Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene. 2000;19:4563–73.
pubmed: 11030145
doi: 10.1038/sj.onc.1203824
Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature. 2001;409:207–11.
pubmed: 11196646
doi: 10.1038/35051606
MacVicar T, Langer T. OPA1 processing in cell death and disease – the long and short of it. J Cell Sci. 2016;129:2297–306.
pubmed: 27189080
Xiao X, Hu Y, Quirós PM, Wei Q, López-Otín C, Dong Z. OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. Am J Physiol Ren Physiol. 2014;306:1318–26.
doi: 10.1152/ajprenal.00036.2014
Bhatia S, Diedrich D, Frieg B, Ahlert H, Stein S, Bopp B, et al. Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood. 2018;132:307–20.
pubmed: 29724897
pmcid: 6225350
doi: 10.1182/blood-2017-10-810986
Oing C, Verem I, Mansour WY, Bokemeyer C, Dyshlovoy S, Honecker F. 5-Azacitidine exerts prolonged pro-apoptotic effects and overcomes cisplatin-resistance in non-seminomatous germ cell tumor cells. Int J Mol Sci. 2018;20:21.
pubmed: 30577584
pmcid: 6337423
doi: 10.3390/ijms20010021
Oechsle K, Honecker F, Cheng T, Mayer F, Czaykowski P, Winquist E, et al. Preclinical and clinical activity of sunitinib in patients with cisplatin-refractory or multiply relapsed germ cell tumors: a Canadian Urologic Oncology Group/German Testicular Cancer Study Group cooperative study. Ann Oncol. 2011;22:2654–60.
pubmed: 21415240
doi: 10.1093/annonc/mdr026
Höhn A, Krüger K, Skowron MA, Bormann S, Schumacher L, Schulz WA, et al. Distinct mechanisms contribute to acquired cisplatin resistance of urothelial carcinoma cells. Oncotarget. 2016;7:41320–35.
pubmed: 27191498
pmcid: 5173062
doi: 10.18632/oncotarget.9321
Bernardi P, Di F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2014;78:100–6.
Huang S, Li R, Connolly PJ, Emanuel S, Middleton SA. Synthesis of 2-amino-4-(7-azaindol-3-yl) pyrimidines as cyclin dependent kinase 1 (CDK1) inhibitors. Bioorg Med Chem Lett. 2006;16:4818–21.
pubmed: 16870444
doi: 10.1016/j.bmcl.2006.06.073
Murrell JN. The electronic spectrum of aromatic molecules VI: the mesomeric effect. Proc Phys Soc. 1955;68:969.
doi: 10.1088/0370-1298/68/11/303
Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.
pubmed: 9422506
doi: 10.1038/34112
Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998;391:96–9.
pubmed: 9422513
doi: 10.1038/34214
Cidado J, Boiko S, Proia T, Ferguson D, Criscione SW, San Martin M, et al. AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer cells. Clin Cancer Res. 2020;26:922–34.
pubmed: 31699827
doi: 10.1158/1078-0432.CCR-19-1853
Baker A, Gregory GP, Verbrugge I, Kats L, Hilton JJ, Vidacs E, et al. The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia. Cancer Res. 2016;76:1158–69.
pubmed: 26627013
doi: 10.1158/0008-5472.CAN-15-1070
Polier G, Ding J, Konkimalla B, Eick D, Ribeiro N, Köhler R, et al. Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1. Cell Death Dis. 2011;2:e182
pubmed: 21776020
pmcid: 3199715
doi: 10.1038/cddis.2011.66
Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005;19:1294–305.
pubmed: 15901672
pmcid: 1142553
doi: 10.1101/gad.1304105
Chen H-C, Kanai M, Inoue-Yamauchi A, Tu H-C, Huang Y, Ren D, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol. 2015;17:1270–81.
pubmed: 26344567
pmcid: 4589531
doi: 10.1038/ncb3236
Soderquist RS, Eastman A. BCL2 inhibitors as anticancer drugs: a plethora of misleading BH3 mimetics. Mol Cancer Ther. 2016;15:2011–7.
pmcid: 5010924
doi: 10.1158/1535-7163.MCT-16-0031
Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138:1120–36.
pubmed: 34320168
doi: 10.1182/blood.2020006785
Bampton ETW, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy. 2005;1:23–36.
pubmed: 16874023
doi: 10.4161/auto.1.1.1495
Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I. Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell. 2007;18:84–93.
pubmed: 17079734
pmcid: 1751323
doi: 10.1091/mbc.e06-04-0263
Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S, et al. Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci. 2001;114:4161–72.
pubmed: 11739649
doi: 10.1242/jcs.114.23.4161
Tait SWG, Parsons MJ, Llambi F, Bouchier-Hayes L, Connell S, Muñoz-Pinedo C, et al. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev Cell. 2010;18:802–13.
pubmed: 20493813
pmcid: 3004027
doi: 10.1016/j.devcel.2010.03.014
Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12:1143–9.
pubmed: 26501517
pmcid: 4666778
doi: 10.1038/nmeth.3630
Dull T, Zufferey R, Kelly M, Mandel R, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.
pubmed: 9765382
pmcid: 110254
doi: 10.1128/JVI.72.11.8463-8471.1998
Müller MR, Burmeister A, Skowron MA, Stephan A, Bremmer F, Wakileh GA, et al. Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights. Clin Epigenetics. 2022;14:1–22.
doi: 10.1186/s13148-021-01223-1
Barrera M, Koob S, Dikov D, Vogel F, Reichert AS. OPA1 functionally interacts with MIC60 but is dispensable for crista junction formation. FEBS Lett. 2016;590:3309–22.
pubmed: 27587279
doi: 10.1002/1873-3468.12384
Böhler P, Stuhldreier F, Anand R, Kondadi AK, Schlütermann D, Berleth N, et al. The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane. Cell Death Dis. 2018;9:286–302.
pubmed: 29459714
pmcid: 5833434
doi: 10.1038/s41419-018-0312-8
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
pubmed: 22743772
doi: 10.1038/nmeth.2019
Franco LH, Joffé EBdK, Puricelli L, Tatian M, Seldes AM, Palermo JA. Indole alkaloids from the tunicate aplidium m eridianum. J Nat Prod. 1998;61:1130–2.
pubmed: 9748381
doi: 10.1021/np970493u
Trimurtulu G, Faulkner DJ, Perry NB, Ettouati L, Litaudon M, Blunt JW, et al. Alkaloids from the antarctic sponge Kirkpatrickia varialosa. Part 2: Variolin A and N(3′)-methyl tetrahydrovariolin B. Tetrahedron. 1994;50:3993–4000.
doi: 10.1016/S0040-4020(01)89674-5
Perry NB, Ettouati L, Litaudon M, Blunt JW, Munro MHG, Parkin S, et al. Alkaloids from the antarctic sponge Kirkpatrickia varialosa.: Part 1: variolin b, a new antitumour and antiviral compound. Tetrahedron. 1994;50:3987–92.
doi: 10.1016/S0040-4020(01)89673-3