Effect of serum concentrations of IL-6 and TNF-α on brain structure in anorexia nervosa: a combined cross-sectional and longitudinal study.


Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907

Informations de publication

Date de publication:
09 Mar 2024
Historique:
received: 16 10 2023
accepted: 19 02 2024
revised: 10 02 2024
medline: 10 3 2024
pubmed: 10 3 2024
entrez: 9 3 2024
Statut: aheadofprint

Résumé

Previous studies of brain structure in anorexia nervosa (AN) have reported reduced gray matter in underweight patients, which largely normalizes upon weight gain. One underlying biological mechanism may be glial cell alterations related to low-grade inflammation. Here, we investigated relationships between brain structure as measured by magnetic resonance imaging and serum concentrations of two pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) cross-sectionally in 82 underweight adolescent and young adult female patients (mean age 16.8 years; 59 of whom were observed longitudinally after short-term weight restoration; mean duration 2.8 months), 20 individuals long-term weight-recovered from AN (mean age 22.7 years) and 105 healthy control (HC) participants (mean age 17.2 years). We measured cortical thickness, subcortical volumes and local gyrification index, a measure of cortical folding. In contrast to most previous studies of cytokine concentrations in AN, we found no cross-sectional group differences (interleukin-6: p = 0.193, tumor necrosis factor alpha: p = 0.057) or longitudinal changes following weight restoration (interleukin-6: p = 0.201, tumor necrosis factor alpha: p = 0.772). As expected, widespread gray matter reductions (cortical thickness, subcortical volumes, cortical folding) were observed in underweight patients with AN compared to HC. However, we found no evidence of associations between cytokine concentrations and structural brain measures in any participant group. Furthermore, longitudinal changes in cytokine concentrations were unrelated to changes in gray matter. In conclusion, we did not identify any association between (sub-)inflammatory processes and structural brain changes in AN. Future studies are needed to elucidate which other factors besides nutritional status may contribute to brain morphological alterations.

Identifiants

pubmed: 38461330
doi: 10.1038/s41386-024-01836-z
pii: 10.1038/s41386-024-01836-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Else Kröner-Fresenius-Stiftung (Else Kroner-Fresenius Foundation)
ID : 2019_A118
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : EH 367/5-1, EH 367/7-1 and SFB 940

Informations de copyright

© 2024. The Author(s).

Références

Dalton B, Bartholdy S, Robinson L, Solmi M, Ibrahim MAA, Breen G, et al. A meta-analysis of cytokine concentrations in eating disorders. J Psychiatr Res. 2018;103:252–64.
pubmed: 29906710 doi: 10.1016/j.jpsychires.2018.06.002
Ehrlich S, Burghardt R, Schneider N, Broecker-Preuss M, Weiss D, Merle JV, et al. The role of leptin and cortisol in hyperactivity in patients with acute and weight-recovered anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:658–62.
pubmed: 19296912 doi: 10.1016/j.pnpbp.2009.03.007
Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 2003;79:25–37.
pubmed: 12818707 doi: 10.1016/S0031-9384(03)00102-1
Dhopatkar N, Keeler JL, Mutwalli H, Whelan K, Treasure J, Himmerich H. Gastrointestinal symptoms, gut microbiome, probiotics and prebiotics in anorexia nervosa: a review of mechanistic rationale and clinical evidence. Psychoneuroendocrinology. 2023;147:105959.
pubmed: 36327759 doi: 10.1016/j.psyneuen.2022.105959
Jésus P, Ouelaa W, François M, Riachy L, Guérin C, Aziz M, et al. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin Nutr Edinb Scotl. 2014;33:1046–53.
doi: 10.1016/j.clnu.2013.11.006
Herpertz-Dahlmann B, Seitz J, Baines J. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa. Eur Child Adolesc Psychiatry. 2017;26:1031–41.
pubmed: 28144744 pmcid: 5591351 doi: 10.1007/s00787-017-0945-7
Seitz J, Dahmen B, Keller L, Herpertz-Dahlmann B. Gut feelings: how microbiota might impact the development and course of anorexia nervosa. Nutrients. 2020;12:E3295.
doi: 10.3390/nu12113295
Solmi M, Veronese N, Favaro A, Santonastaso P, Manzato E, Sergi G, et al. Inflammatory cytokines and anorexia nervosa: a meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology. 2015;51:237–52.
pubmed: 25462897 doi: 10.1016/j.psyneuen.2014.09.031
Brooks SJ. Targeting cytokines in the 5-Lox pro-inflammatory pathway for treatment-resistant anorexia nervosa. J Mol Genet Med Int J Biomed Res. 2018;1:4 https://doi.org/10.4172/1747-0862.1000376 .
Han MS, White A, Perry RJ, Camporez J-P, Hidalgo J, Shulman GI, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci USA. 2020;117:2751–60.
pubmed: 31980524 pmcid: 7022151 doi: 10.1073/pnas.1920004117
Almada C, Cataldo LR, Smalley SV, Diaz E, Serrano A, Hodgson MI, et al. Plasma levels of interleukin-6 and interleukin-18 after an acute physical exercise: relation with post-exercise energy intake in twins. J Physiol Biochem. 2013;69:85–95.
pubmed: 22810957 doi: 10.1007/s13105-012-0191-x
Hunschede S, Schwartz A, Kubant R, Thomas SG, Anderson GH. The role of IL-6 in exercise-induced anorexia in normal-weight boys. Appl Physiol Nutr Metab. 2018;43:979–87.
pubmed: 29590534 doi: 10.1139/apnm-2018-0019
de Baat A, Trinh B, Ellingsgaard H, Donath MY. Physiological role of cytokines in the regulation of mammalian metabolism. Trends Immunol. 2023;44:613–27.
pubmed: 37423882 doi: 10.1016/j.it.2023.06.002
Dalton B, Leppanen J, Campbell IC, Chung R, Breen G, Schmidt U, et al. A longitudinal analysis of cytokines in anorexia nervosa. Brain Behav Immun. 2020;85:88–95.
pubmed: 31077775 doi: 10.1016/j.bbi.2019.05.012
Bernardoni F, King JA, Geisler D, Birkenstock J, Tam FI, Weidner K, et al. Nutritional status affects cortical folding: lessons learned from anorexia nervosa. Biol Psychiatry. 2018;84:692–701.
pubmed: 29910027 doi: 10.1016/j.biopsych.2018.05.008
Seitz J, Herpertz-Dahlmann B, Konrad K. Brain morphological changes in adolescent and adult patients with anorexia nervosa. J Neural Transm. 2016;123:949–59.
pubmed: 27188331 doi: 10.1007/s00702-016-1567-9
King JA, Frank GKW, Thompson PM, Ehrlich S. Structural neuroimaging of anorexia nervosa: future directions in the quest for mechanisms underlying dynamic alterations. Biol Psychiatry. 2018;83:224–34.
pubmed: 28967386 doi: 10.1016/j.biopsych.2017.08.011
Bahnsen K, Bernardoni F, King JA, Geisler D, Weidner K, Roessner V, et al. Dynamic structural brain changes in anorexia nervosa: a replication study, mega-analysis, and virtual histology approach. J Am Acad Child Adolesc Psychiatry. 2022;61:1168–81.
pubmed: 35390458 doi: 10.1016/j.jaac.2022.03.026
Bernardoni F, King JA, Geisler D, Stein E, Jaite C, Nätsch D, et al. Weight restoration therapy rapidly reverses cortical thinning in anorexia nervosa: a longitudinal study. NeuroImage. 2016;130:214–22.
pubmed: 26876474 doi: 10.1016/j.neuroimage.2016.02.003
Zilles K, Palomero-Gallagher N, Amunts K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 2013;36:275–84.
pubmed: 23415112 doi: 10.1016/j.tins.2013.01.006
Kim Y-K, Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res. 2017;329:6–11.
pubmed: 28442354 doi: 10.1016/j.bbr.2017.04.020
Tu P-C, Li C-T, Lin W-C, Chen M-H, Su T-P, Bai Y-M. Structural and functional correlates of serum soluble IL-6 receptor level in patients with bipolar disorder. J Affect Disord. 2017;219:172–7.
pubmed: 28558364 doi: 10.1016/j.jad.2017.04.036
Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiatry. 2022;79:498–507.
pubmed: 35353173 pmcid: 8968718 doi: 10.1001/jamapsychiatry.2022.0407
Bai Y-M, Chen M-H, Hsu J-W, Huang K-L, Tu P-C, Chang W-C, et al. A comparison study of metabolic profiles, immunity, and brain gray matter volumes between patients with bipolar disorder and depressive disorder. J Neuroinflammation. 2020;17:42.
pubmed: 32000805 pmcid: 6990475 doi: 10.1186/s12974-020-1724-9
Laskaris L, Mancuso S, Shannon Weickert C, Zalesky A, Chana G, Wannan C, et al. Brain morphology is differentially impacted by peripheral cytokines in schizophrenia-spectrum disorder. Brain Behav Immun. 2021;95:299–309.
pubmed: 33838248 doi: 10.1016/j.bbi.2021.04.002
Chen M-H, Kao Z-K, Chang W-C, Tu P-C, Hsu J-W, Huang K-L, et al. Increased proinflammatory cytokines, executive dysfunction, and reduced gray matter volumes in first-episode bipolar disorder and major depressive disorder. J Affect Disord. 2020;274:825–31.
pubmed: 32664021 doi: 10.1016/j.jad.2020.05.158
Licinio J, Wong ML. Pathways and mechanisms for cytokine signaling of the central nervous system. J Clin Invest. 1997;100:2941–7.
pubmed: 9399938 pmcid: 508504 doi: 10.1172/JCI119846
Harrison NA, Cooper E, Dowell NG, Keramida G, Voon V, Critchley HD, et al. Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol Psychiatry. 2015;78:49–57.
pubmed: 25526971 pmcid: 4503794 doi: 10.1016/j.biopsych.2014.09.023
Lesh TA, Careaga M, Rose DR, McAllister AK, Van de Water J, Carter CS, et al. Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflammation. 2018;15:165.
pubmed: 29803226 pmcid: 5970482 doi: 10.1186/s12974-018-1197-2
Seitz J, Trinh S, Kogel V, Beyer C. Brain volume loss, astrocyte reduction, and inflammation in anorexia nervosa. Adv Neurobiol. 2021;26:283–313.
pubmed: 34888839 doi: 10.1007/978-3-030-77375-5_12
Hellerhoff I, King JA, Tam FI, Pauligk S, Seidel M, Geisler D, et al. Differential longitudinal changes of neuronal and glial damage markers in anorexia nervosa after partial weight restoration. Transl Psychiatry. 2021;11:86.
pubmed: 33558486 pmcid: 7870648 doi: 10.1038/s41398-021-01209-w
Nilsson IAK, Millischer V, Karrenbauer VD, Juréus A, Salehi AM, Norring C, et al. Plasma neurofilament light chain concentration is increased in anorexia nervosa. Transl Psychiatry. 2019;9:180.
pubmed: 31371701 pmcid: 6675786 doi: 10.1038/s41398-019-0518-2
Hellerhoff I, Bernardoni F, Bahnsen K, King JA, Doose A, Pauligk S, et al. Serum neurofilament light concentrations are associated with cortical thinning in anorexia nervosa. Psychol Med. 2023;53:7053–61.
Smitka K, Papezova H, Vondra K, Hill M, Hainer V, Nedvidkova J. The role of “mixed” orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa. Int J Endocrinol. 2013;2013:1–21.
doi: 10.1155/2013/483145
Fichter M, Quadflieg N. Strukturiertes Inventar für anorektische und bulimische Esstörungen (SIAB); Fragebogen (SIAB-S) und Interview (SIAB-EX) nach DSM-IV und ICD-10; Handanweisung. Göttingen, Germany: Hogrefe; 1999.
Thiel A, Jacobi C, Horstmann S, Paul T, Nutzinger DO, Schüssler G. Eine deutschsprachige Version des Eating Disorder Inventory EDI-2 [A German version of the Eating DisorderInventory EDI-2]. Psychother Psychosom Med Psychol. 1997;47:365–76.
Hautzinger M, Kühner C, Keller F. Beck Depressions-Inventar (BDI-II). Frankfurt, Germany: Pearson Assessment and Information GmbH; 2009.
Franke G, Derogatis L. Symptom-Checkliste von LR Derogatis: SCL-90-R; Deutsche Version. Göttingen, Germany: Beltz Test; 2002.
von Aster M, Neubauer A, Horn R. WIE—Wechsler Intelligenztest für Erwachsene. Bern, Switzerland: Huber; 2006.
Petermann F, Petermann U. HAWIK IV. Hamburg-Wechsler-Intelligenztest für Kinder IV. Übersetzung und Adaptation der WISC-IV von David Wechsler. Göttingen, Germany: Hogrefe; 2010.
Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V, et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd. 2001;149:807–18.
doi: 10.1007/s001120170107
Wei R, Wang J, Jia E, Chen T, Ni Y, Jia W. GSimp: a Gibbs sampler based left-censored missing value imputation approach for metabolomics studies. PLoS Comput Biol. 2018;14:e1005973.
pubmed: 29385130 pmcid: 5809088 doi: 10.1371/journal.pcbi.1005973
King JA, Geisler D, Ritschel F, Boehm I, Seidel M, Roschinski B, et al. Global cortical thinning in acute anorexia nervosa normalizes following long-term weight restoration. Biol Psychiatry. 2015;77:624–32.
pubmed: 25433902 doi: 10.1016/j.biopsych.2014.09.005
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80.
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation. Neuron. 2002;33:341–55.
pubmed: 11832223 doi: 10.1016/S0896-6273(02)00569-X
Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61:1402–18.
pubmed: 22430496 doi: 10.1016/j.neuroimage.2012.02.084
Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA. 2000;97:11050–5.
pubmed: 10984517 pmcid: 27146 doi: 10.1073/pnas.200033797
Schaer M, Cuadra MB, Tamarit L, Lazeyras F, Eliez S, Thiran J-P. A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging. 2008;27:161–70.
pubmed: 18334438 doi: 10.1109/TMI.2007.903576
Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage. 2013;66:249–60.
pubmed: 23123680 doi: 10.1016/j.neuroimage.2012.10.065
Tamnes CK, Herting MM, Goddings A-L, Meuwese R, Blakemore S-J, Dahl RE, et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J Neurosci. 2017;37:3402–12.
pubmed: 28242797 pmcid: 5373125 doi: 10.1523/JNEUROSCI.3302-16.2017
Wang H, Chen H, Fu Y, Liu M, Zhang J, Han S, et al. Effects of smoking on inflammatory-related cytokine levels in human serum. Molecules. 2022;27:3715.
pubmed: 35744838 pmcid: 9227219 doi: 10.3390/molecules27123715
He H, Wang W, Crits-Christoph P, Gallop R, Tang W, Chen D-G, et al. On the implication of structural zeros as independent variables in regression analysis: applications to alcohol research. J Data Sci. 2014;12:439–60.
pubmed: 28989340 pmcid: 5628625 doi: 10.6339/JDS.201407_12(3).0004
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021.
Nilsson IAK, Millischer V, Göteson A, Hübel C, Thornton LM, Bulik CM, et al. Aberrant inflammatory profile in acute but not recovered anorexia nervosa. Brain Behav Immun. 2020;88:718–24.
pubmed: 32389698 doi: 10.1016/j.bbi.2020.05.024
Keeler JL, Patsalos O, Chung R, Schmidt U, Breen G, Treasure J, et al. Reduced MIP-1β as a trait marker and reduced IL-7 and IL-12 as state markers of anorexia nervosa. J Pers Med. 2021;11:814.
pubmed: 34442458 pmcid: 8399452 doi: 10.3390/jpm11080814
Specht HE, Mannig N, Belheouane M, Andreani NA, Tenbrock K, Biemann R, et al. Lower serum levels of IL-1β and IL-6 cytokines in adolescents with anorexia nervosa and their association with gut microbiota in a longitudinal study. Front Psychiatry. 2022;13:920665.
pubmed: 36061277 pmcid: 9433656 doi: 10.3389/fpsyt.2022.920665
Breithaupt L, Holsen LM, Ji C, Hu J, Petterway F, Rosa-Caldwell M, et al. Identification of state markers in anorexia nervosa: replication and extension of inflammation associated biomarkers using multiplex profiling in anorexia nervosa and atypical anorexia nervosa. bioRxiv. 2023. https://doi.org/10.1101/2023.06.30.547289 .
Ruiz Guerrero F, González Gómez J, Benito Gonzalez P, García García J, Berja Miguel A, Calcedo Giraldo G, et al. Low levels of proinflammatory cytokines in a transdiagnostic sample of young male and female early onset eating disorders without any previous treatment: a case control study. Psychiatry Res. 2022;310:114449.
pubmed: 35219264 doi: 10.1016/j.psychres.2022.114449
Malinowski B, Zalewska K, Węsierska A, Sokołowska MM, Socha M, Liczner G, et al. Intermittent fasting in cardiovascular disorders—an overview. Nutrients. 2019;11:673.
pubmed: 30897855 pmcid: 6471315 doi: 10.3390/nu11030673
Dwaib HS, AlZaim I, Eid AH, Obeid O, El-Yazbi AF. Modulatory effect of intermittent fasting on adipose tissue inflammation: amelioration of cardiovascular dysfunction in early metabolic impairment. Front Pharm. 2021;12:626313.
doi: 10.3389/fphar.2021.626313
Berthelot E, Etchecopar-Etchart D, Thellier D, Lancon C, Boyer L, Fond G. Fasting interventions for stress, anxiety and depressive symptoms: a systematic review and meta-analysis. Nutrients. 2021;13:3947.
pubmed: 34836202 pmcid: 8624477 doi: 10.3390/nu13113947
Caso JR, Graell M, Navalón A, MacDowell KS, Gutiérrez S, Soto M, et al. Dysfunction of inflammatory pathways in adolescent female patients with anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry. 2020;96:109727.
pubmed: 31398429 doi: 10.1016/j.pnpbp.2019.109727
Friedman E, Shorey C. Inflammation in multimorbidity and disability: an integrative review. Health Psychol. 2019;38:791–801.
pubmed: 31436464 pmcid: 6709716 doi: 10.1037/hea0000749
Wronski M-L, Geisler D, Bernardoni F, Seidel M, Bahnsen K, Doose A, et al. Differential alterations of amygdala nuclei volumes in acutely ill patients with anorexia nervosa and their associations with leptin levels. Psychol Med. 2023;53:6288–6303.
JASP Team (2019). JASP (Version 0.10) [Computer software].

Auteurs

Fabio Bernardoni (F)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Friederike Tam (F)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

David M Poitz (DM)

University Hospital Carl Gustav Carus, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.

Inger Hellerhoff (I)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Dominic Arold (D)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Daniel Geisler (D)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Frances Lemme (F)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Johanna Keeler (J)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Kerstin Weidner (K)

Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Carmine Pariante (C)

Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Veit Roessner (V)

Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Joseph A King (JA)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Stefan Ehrlich (S)

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. transden.lab@uniklinikum-dresden.de.
Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. transden.lab@uniklinikum-dresden.de.

Classifications MeSH