The choice-wide behavioral association study: data-driven identification of interpretable behavioral components.


Journal

bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
28 Feb 2024
Historique:
pubmed: 11 3 2024
medline: 11 3 2024
entrez: 11 3 2024
Statut: epublish

Résumé

Behavior contains rich structure across many timescales, but there is a dearth of methods to identify relevant components, especially over the longer periods required for learning and decision-making. Inspired by the goals and techniques of genome-wide association studies, we present a data-driven method-the choice-wide behavioral association study: CBAS-that systematically identifies such behavioral features. CBAS uses powerful, resampling-based, methods of multiple comparisons correction

Identifiants

pubmed: 38464037
doi: 10.1101/2024.02.26.582115
pmc: PMC10925091
pii:
doi:

Types de publication

Preprint

Langues

eng

Subventions

Organisme : NIMH NIH HHS
ID : R25 MH060482
Pays : United States

Déclaration de conflit d'intérêts

Declaration of interests. The authors declare no competing interests.

Auteurs

David B Kastner (DB)

Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA.
Lead Contact.

Greer Williams (G)

Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA.

Cristofer Holobetz (C)

Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA.

Joseph P Romano (JP)

Department of Statistics, Stanford University, Stanford, CA 94305, USA.

Peter Dayan (P)

Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.

Classifications MeSH