The choice-wide behavioral association study: data-driven identification of interpretable behavioral components.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
28 Feb 2024
28 Feb 2024
Historique:
pubmed:
11
3
2024
medline:
11
3
2024
entrez:
11
3
2024
Statut:
epublish
Résumé
Behavior contains rich structure across many timescales, but there is a dearth of methods to identify relevant components, especially over the longer periods required for learning and decision-making. Inspired by the goals and techniques of genome-wide association studies, we present a data-driven method-the choice-wide behavioral association study: CBAS-that systematically identifies such behavioral features. CBAS uses powerful, resampling-based, methods of multiple comparisons correction
Identifiants
pubmed: 38464037
doi: 10.1101/2024.02.26.582115
pmc: PMC10925091
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIMH NIH HHS
ID : R25 MH060482
Pays : United States
Déclaration de conflit d'intérêts
Declaration of interests. The authors declare no competing interests.