Study of an FBXO7 patient mutation reveals Fbxo7 and PI31 co-regulate proteasomes and mitochondria.
E3 ubiquitin ligase
Fbxo7/PARK15
Parkinson's disease
mitochondria
proteasome
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
11 Mar 2024
11 Mar 2024
Historique:
revised:
18
01
2024
received:
06
12
2023
accepted:
29
02
2024
medline:
11
3
2024
pubmed:
11
3
2024
entrez:
11
3
2024
Statut:
aheadofprint
Résumé
Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCF
Banques de données
RefSeq
['NM_012179.4']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Medical Research Council
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 203151/Z/16/Z
Pays : United Kingdom
Organisme : Cancer Research UK
ID : FC001115
Pays : United Kingdom
Organisme : Parkinson's UK
ID : G-1701
Pays : United Kingdom
Informations de copyright
© 2024 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Ferreira M & Massano J (2017) An updated review of Parkinson's disease genetics and clinicopathological correlations. Acta Neurol Scand 135, 273-284.
Wittke C, Petkovic S, Dobricic V, Schaake S, Respondek G, Weissbach A, Madoev H, Trinh J, Vollstedt EJ, Kuhnke N et al. (2021) Genotype-phenotype relations for the atypical parkinsonism genes: MDSGene systematic review. Mov Disord 36, 1499-1510.
Paisan-Ruiz C, Guevara R, Federoff M, Hanagasi H, Sina F, Elahi E, Schneider SA, Schwingenschuh P, Bajaj N, Emre M et al. (2010) Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord 25, 1791-1800.
Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia GL, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH et al. (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240-245.
Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, Fakhrai-Rad H, Ronaghi M & Elahi E (2008) Genome-wide linkage analysis of a parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 82, 1375-1384.
Lohmann E, Coquel AS, Honore A, Gurvit H, Hanagasi H, Emre M, Leutenegger AL, Drouet V, Sahbatou M, Guven G et al. (2015) A new F-box protein 7 gene mutation causing typical Parkinson's disease. Mov Disord 30, 1130-1133.
Lorenzo-Betancor O, Lin YH, Samii A, Jayadev S, Kim HM, Longfellow K, Distad BJ, Yearout D, Mata IF & Zabetian CP (2020) Novel compound heterozygous FBXO7 mutations in a family with early onset Parkinson's disease. Parkinsonism Relat Disord 80, 142-147.
Yoo D, Choi JH, Im JH, Kim MJ, Kim HJ, Park SS & Jeon B (2020) Young-onset Parkinson's disease with impulse control disorder due to novel variants of F-box only protein 7. J Mov Disord 13, 225-228.
Correa-Vela M, Lupo V, Montpeyó M, Sancho P, Marcé-Grau A, Hernández-Vara J, Darling A, Jenkins A, Fernández-Rodríguez S, Tello C et al. (2020) Impaired proteasome activity and neurodegeneration with brain iron accumulation in FBXO7 defect. Ann Clin Transl Neurol 7, 1436-1442.
Zhao Y, Qin L, Pan H, Liu Z, Jiang L, He Y, Zeng Q, Zhou X, Zhou Y, Fang Z et al. (2020) The role of genetics in Parkinson's disease: a large cohort study in Chinese mainland population. Brain 143, 2220-2234.
Jin X, An L, Hao S, Liu Q, Zhang Q, Wang X, Feng X, Zhang C, Cao X, Yan Y et al. (2020) Compound heterozygous variants of the FBXO7 gene resulting in infantile-onset parkinsonian-pyramidal syndrome in siblings of a Chinese family. J Clin Lab Anal 34, e23324.
Mensikova K, Tuckova L, Kolarikova K, Bartonikova T, Vodicka R, Ehrmann J, Vrtel R, Prochazka M, Kanovsky P & Kovacs GG (2018) Atypical parkinsonism of progressive supranuclear palsy-parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol 137, 171-173.
Youn J, Lee C, Oh E, Park J, Kim JS, Kim HT, Cho JW, Park WY, Jang W & Ki CS (2019) Genetic variants of PARK genes in Korean patients with early-onset Parkinson's disease. Neurobiol Aging 75, 224.e9-224.e15.
Bartonikova T, Mensikova K, Mikulicova L, Vodicka R, Vrtel R, Godava M, Vastik M, Kaiserova M, Otruba P, Dolinova I et al. (2016) Familial atypical parkinsonism with rare variant in VPS35 and FBXO7 genes: a case report. Medicine (Baltimore) 95, e5398.
Gunduz A, Eken AG, Bilgic B, Hanagasi HA, Bilguvar K, Gunel M, Basak AN & Ertan S (2014) FBXO7-R498X mutation: phenotypic variability from chorea to early onset parkinsonism within a family. Parkinsonism Relat Disord 20, 1253-1256.
Yalcin-Cakmakli G, Olgiati S, Quadri M, Breedveld GJ, Cortelli P, Bonifati V & Elibol B (2014) A new Turkish family with homozygous FBXO7 truncating mutation and juvenile atypical parkinsonism. Parkinsonism Relat Disord 20, 1248-1252.
Keller Sarmiento IJ, Afshari M, Kinsley L, Silani V, Akhtar RS, Simuni T, Lubbe SJ, Krainc D & Mencacci NE (2022) Novel bi-allelic FBXO7 variants in a family with early-onset typical Parkinson's disease. Parkinsonism Relat Disord 104, 88-90.
Kim EY, Kim SY, Seo Y & Shin C (2022) Nearly abolished dopamine transporter uptake in a patient with a novel FBXO7 mutation. J Mov Disord 15, 269-272.
Randle SJ & Laman H (2016) Structure and function of Fbxo7/PARK15 in Parkinson's disease. Curr Protein Pept Sci 18, 715-724.
Teixeira FR, Randle SJ, Patel SP, Mevissen TE, Zenkeviciute G, Koide T, Komander D & Laman H (2016) Gsk3beta and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson's disease. Biochem J 473, 3563-3580.
Randle SJ, Nelson DE, Patel SP & Laman H (2015) Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol 237, 263-272.
Meziane EK, Randle SJ, Nelson DE, Lomonosov M & Laman H (2011) Knockdown of Fbxo7 reveals its regulatory role in proliferation and differentiation of haematopoietic precursor cells. J Cell Sci 124, 2175-2186.
Laman H, Funes JM, Ye H, Henderson S, Galinanes-Garcia L, Hara E, Knowles P, McDonald N & Boshoff C (2005) Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J 24, 3104-3116.
Huang T, Fang L, He R, Weng H, Chen X, Ye Q & Qu D (2020) Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels. Aging (Albany NY) 13, 77-88.
Delgado-Camprubi M, Esteras N, Soutar MP, Plun-Favreau H & Abramov AY (2017) Deficiency of Parkinson's disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation. Cell Death Differ 24, 120-131.
Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H et al. (2013) The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16, 1257-1265.
Shang J, Huang X & Du Z (2015) The FP domains of PI31 and Fbxo7 have the same protein fold but very different modes of protein-protein interaction. J Biomol Struct Dyn 33, 1528-1538.
Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, Meziane EK & McDonald NQ (2008) Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J Biol Chem 283, 22325-22335.
Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, Johnson EEP, Bacon J, Vlazaki M, Affara NA et al. (2019) A conserved requirement for Fbxo7 during male germ cell cytoplasmic remodeling. Front Physiol 10, 1278.
Stott SR, Randle SJ, Al Rawi S, Rowicka PA, Harris R, Mason B, Xia J, Dalley JW, Barker RA & Laman H (2019) Loss of FBXO7 results in a Parkinson's-like dopaminergic degeneration via an RPL23-MDM2-TP53 pathway. J Pathol 249, 241-254.
Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C & Choudhary C (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11, 1578-1585.
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M & Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10, M111.
Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N & Nielsen ML (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10, M110.
Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F et al. (2021) The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 30, 187-200.
Hsu HC, Wang J, Kjellgren A, Li H & DeMartino GN (2023) Ηigh-resolution structure of mammalian PI31-20S proteasome complex reveals mechanism of proteasome inhibition. J Biol Chem 299, 104862.
Jespersen N, Ehrenbolger K, Winiger RR, Svedberg D, Vossbrinck CR & Barandun J (2022) Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 13, 6962.
Rawson S, Walsh RM, Velez B, Schnell HM, Jiao F, Blickling M, Ang J, Bhanu MK, Huang L & Hanna J (2022) Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Nat Struct Mol Biol 29, 791-800.
Li X, Thompson D, Kumar B & DeMartino GN (2014) Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem 289, 17392-17405.
Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, Schwedhelm-Domeyer N, Joseph S, Mitkovski M, Goebbels S et al. (2016) Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J 35, 2008-2025.
Liu K, Jones S, Minis A, Rodriguez J, Molina H & Steller H (2019) PI31 is an adaptor protein for proteasome transport in axons and required for synaptic development. Dev Cell 50, 509-524.
Shang J, Wang G, Yang Y, Huang X & Du Z (2014) Structure of the FP domain of Fbxo7 reveals a novel mode of protein-protein interaction. Acta Crystallogr D 70, 155-164.
Zaiss DM, Standera S, Kloetzel PM & Sijts AJ (2002) PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA 99, 14344-14349.
McCutchen-Maloney SL, Matsuda K, Shimbara N, Binns DD, Tanaka K, Slaughter CA & DeMartino GN (2000) cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 275, 18557-18565.
Zaiss DM, Standera S, Holzhutter H, Kloetzel P & Sijts AJ (1999) The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457, 333-338.
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N et al. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173-1178.
Losón OC, Song Z, Chen H & Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24, 659-667.
Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D & Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288, 27584-27593.
Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE & Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12, 565-573.
Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL & Steller H (2011) A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 145, 371-382.
Shen JZ, Qiu Z, Wu Q, Zhang G, Harris R, Sun D, Rantala J, Barshop WD, Zhao L, Lv D et al. (2022) A FBXO7-EYA2-FBXW7 axis promotes AXL-mediated maintenance of mesenchymal and immune evasion phenotypes of cancer cells. Mol Cell 82, 1123-1139.e8.
Allen GF, Toth R, James J & Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14, 1127-1135.
Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, Leng K, Nalls MA, Singleton AB, Xu K et al. (2021) Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 24, 1020-1034.
Harris R (2021) Ubiquitination of Proteins Involved in Metabolism and Immunomodulatory Drug Sensitivity in Lymphocytes. University of Cambridge, Cambridge.
Joseph S, Vingill S, Jahn O, Fledrich R, Werner HB, Katona I, Mobius W, Mitkovski M, Huang Y, Weis J et al. (2019) Myelinating Glia-specific deletion of Fbxo7 in mice triggers axonal degeneration in the central nervous system together with peripheral neuropathy. J Neurosci 39, 5606-5626.
Cherok E, Xu S, Li S, Das S, Meltzer WA, Zalzman M, Wang C & Karbowski M (2017) Novel regulatory roles of Mff and Drp1 in E3 ubiquitin ligase MARCH5-dependent degradation of MiD49 and Mcl1 and control of mitochondrial dynamics. Mol Biol Cell 28, 396-410.
Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, Polster BM, Boyman L, Lederer WJ, Wang C et al. (2016) Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell 27, 349-359.
Bai L, Liang J, Li L & Li E (2020) Downregulation of MiD49 contributes to tumor growth and metastasis of human pancreatic cancer. Oncol Rep 43, 1208-1220.
Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D, Ramachandran R & Ryan MT (2016) Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J Cell Sci 129, 2170-2181.
Niemann A, Wagner KM, Ruegg M & Suter U (2009) GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 36, 509-520.
Niemann A, Ruegg M, La Padula V, Schenone A & Suter U (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol 170, 1067-1078.
Xian H & Liou YC (2019) Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy. Autophagy 15, 2107-2125.
Horn A, Raavicharla S, Shah S, Cox D & Jaiswal JK (2020) Mitochondrial fragmentation enables localized signaling required for cell repair. J Cell Biol 219, e201909154.
Sanchez-Martinez A, Martinez A & Whitworth AJ (2023) FBXO7/ntc and USP30 antagonistically set the ubiquitination threshold for basal mitophagy and provide a target for Pink1 phosphorylation in vivo. PLoS Biol 21, e3002244.
Kraus F, Goodall EA, Smith IR, Jiang Y, Paoli JC, Adolf F, Zhang J, Paulo JA, Schulman BA & Harper JW (2023) PARK15/FBXO7 is dispensable for PINK1/Parkin mitophagy in iNeurons and HeLa cell systems. EMBO Rep 24, e56399.
Harris R, Yang M, Schmidt C, Royet C, Singh S, Natarajan A, Morris M, Frezza C & Laman H (2022) Fbxo7 promotes Cdk6 activity to inhibit PFKP and glycolysis in T cells. J Cell Biol 221, e202203095.
Losón OC, Meng S, Ngo H, Liu R, Kaiser JT & Chan DC (2015) Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci 24, 386-394.