Spike synchrony as a measure of Gestalt structure.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
11 Mar 2024
11 Mar 2024
Historique:
received:
08
12
2023
accepted:
16
02
2024
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
epublish
Résumé
The function of spike synchrony is debatable: some researchers view it as a mechanism for binding perceptual features, others - as a byproduct of brain activity. We argue for an alternative computational role: synchrony can estimate the prior probability of incoming stimuli. In V1, this can be achieved by comparing input with previously acquired visual experience, which is encoded in plastic horizontal intracortical connections. V1 connectivity structure can encode the acquired visual experience in the form of its aggregate statistics. Since the aggregate statistics of natural images tend to follow the Gestalt principles, we can assume that V1 is more often exposed to Gestalt-like stimuli, and this is manifested in its connectivity structure. At the same time, the connectivity structure has an impact on spike synchrony in V1. We used a spiking model with V1-like connectivity to demonstrate that spike synchrony reflects the Gestalt structure of the stimulus. We conducted simulation experiments with three Gestalt laws: proximity, similarity, and continuity, and found substantial differences in firing synchrony for stimuli with varying degrees of Gestalt-likeness. This allows us to conclude that spike synchrony indeed reflects the Gestalt structure of the stimulus, which can be interpreted as a mechanism for prior probability estimation.
Identifiants
pubmed: 38467630
doi: 10.1038/s41598-024-54755-w
pii: 10.1038/s41598-024-54755-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5910Subventions
Organisme : Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
ID : 456666331
Informations de copyright
© 2024. The Author(s).
Références
Gray, C. M., König, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989).
pubmed: 2922061
doi: 10.1038/338334a0
Kreiter, A. K. & Singer, W. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J. Neurosci. 16(7), 2381–2396 (1996).
pubmed: 8601818
pmcid: 6578521
doi: 10.1523/JNEUROSCI.16-07-02381.1996
Ahissar, E. et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257(5075), 1412–1415 (1992).
pubmed: 1529342
doi: 10.1126/science.1529342
Decharms, R. C. & Merzenich, M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583), 610–613 (1996).
pubmed: 8637597
doi: 10.1038/381610a0
Murthy, V. N. & Fetz, E. E. Oscillatory activity in sensorimotor cortex of awake monkeys: Synchronization of local field potentials and relation to behavior. J. Neurophysiol. 76(6), 3949–3967 (1996).
pubmed: 8985892
doi: 10.1152/jn.1996.76.6.3949
Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373(6514), 515–518 (1995).
pubmed: 7845462
doi: 10.1038/373515a0
Shadlen, M. N. & Movshon, J. A. Synchrony unbound: A critical evaluation of the temporal binding hypothesis. Neuron 24(1), 67–77 (1999).
pubmed: 10677027
doi: 10.1016/S0896-6273(00)80822-3
Tovee, M. J. & Rolls, E. T. Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli. Neuroreport 3(4), 369–372 (1992).
pubmed: 1515598
doi: 10.1097/00001756-199204000-00020
Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. The role of neuronal synchronization in response selection: A biologically plausible theory of structured representations in the visual cortex. J. Cogn. Neurosci. 8(6), 603–625 (1996).
pubmed: 23961987
doi: 10.1162/jocn.1996.8.6.603
Singer, W. Neuronal synchrony: A versatile code for the definition of relations?. Neuron 24(1), 49–65 (1999).
pubmed: 10677026
doi: 10.1016/S0896-6273(00)80821-1
Li, Z. A neural model of contour integration in the primary visual cortex. Neural Comput. 10(4), 903–940 (1998).
pubmed: 9573412
doi: 10.1162/089976698300017557
Supèr, H. & Romeo, A. Approximate emergent synchrony in spatially coupled spiking neurons with discrete interaction. Neural Comput. 26(11), 2419–2440 (2014).
pubmed: 25149703
doi: 10.1162/NECO_a_00658
Fries, P., Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. 94(23), 12699–12704 (1997).
pubmed: 9356513
pmcid: 25091
doi: 10.1073/pnas.94.23.12699
Fries, P., Schröder, J. H., Roelfsema, P. R., Singer, W. & Engel, A. K. Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22(9), 3739–3754 (2002).
pubmed: 11978850
pmcid: 6758402
doi: 10.1523/JNEUROSCI.22-09-03739.2002
Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612), 157–161 (1997).
pubmed: 8990118
doi: 10.1038/385157a0
Gross, J. et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl. Acad. Sci. 101(35), 13050–13055 (2004).
pubmed: 15328408
pmcid: 516515
doi: 10.1073/pnas.0404944101
Korndörfer, C., Ullner, E., García-Ojalvo, J. & Pipa, G. Cortical spike synchrony as a measure of input familiarity. Neural Comput. 29(9), 2491–2510 (2017).
pubmed: 28599117
doi: 10.1162/neco_a_00987
Wang, X. J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90(3), 1195–1268 (2010).
pubmed: 20664082
doi: 10.1152/physrev.00035.2008
Atencio, C. A. & Schreiner, C. E. Auditory cortical local subnetworks are characterized by sharply synchronous activity. J. Neurosci. 33(47), 18503–18514 (2013).
pubmed: 24259573
pmcid: 3834056
doi: 10.1523/JNEUROSCI.2014-13.2013
Reed, J. L. et al. Widespread spatial integration in primary somatosensory cortex. Proc. Natl. Acad. Sci. 105(29), 10233–10237 (2008).
pubmed: 18632579
pmcid: 2481381
doi: 10.1073/pnas.0803800105
Kohn, A. & Smith, M. A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25(14), 3661–3673 (2005).
pubmed: 15814797
pmcid: 6725370
doi: 10.1523/JNEUROSCI.5106-04.2005
Jackson, A., Gee, V. J., Baker, S. N. & Lemon, R. N. Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron 38(1), 115–125 (2003).
pubmed: 12691669
doi: 10.1016/S0896-6273(03)00162-4
Riehle, A., Grun, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997).
pubmed: 9395398
doi: 10.1126/science.278.5345.1950
Pipa, G., Riehle, A. & Grün, S. Validation of task-related excess of spike coincidences based on NeuroXidence. Neurocomputing 70(10–12), 2064–2068 (2007).
doi: 10.1016/j.neucom.2006.10.142
Thiele, A. & Hoffmann, K. P. Neuronal firing rate, inter-neuron correlation and synchrony in area MT are correlated with directional choices during stimulus and reward expectation. Exp. Brain Res. 188, 559–577 (2008).
pubmed: 18443768
doi: 10.1007/s00221-008-1391-z
Sakurai, Y. & Takahashi, S. Dynamic synchrony of firing in the monkey prefrontal cortex during working-memory tasks. J. Neurosci. 26(40), 10141–10153 (2006).
pubmed: 17021170
pmcid: 6674631
doi: 10.1523/JNEUROSCI.2423-06.2006
Pipa, G. & Munk, M. H. Higher order spike synchrony in prefrontal cortex during visual memory. Front. Comput. Neurosci. 5, 23 (2011).
pubmed: 21713065
pmcid: 3114178
doi: 10.3389/fncom.2011.00023
Hirabayashi, T. & Miyashita, Y. Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. J. Neurosci. 25(44), 10299–10307 (2005).
pubmed: 16267238
pmcid: 6725794
doi: 10.1523/JNEUROSCI.3036-05.2005
König, P., Engel, A. K., Löwel, S. & Singer, W. Squint affects synchronization of oscillatory responses in cat visual cortex. Eur. J. Neurosci. 5(5), 501–508 (1993).
pubmed: 8261125
doi: 10.1111/j.1460-9568.1993.tb00516.x
Stettler, D. D., Das, A., Bennett, J. & Gilbert, C. D. Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4), 739–750 (2002).
pubmed: 12441061
doi: 10.1016/S0896-6273(02)01029-2
Gilbert, C. D. & Wiesel, T. N. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3(5), 1116–1133 (1983).
pubmed: 6188819
pmcid: 6564507
doi: 10.1523/JNEUROSCI.03-05-01116.1983
Weiss, D. S. & Keller, A. Specific patterns of intrinsic connections between representation zones in the rat motor cortex. Cerebral Cortex 4(2), 205–214 (1994).
pubmed: 8038569
doi: 10.1093/cercor/4.2.205
Read, H. L., Winer, J. A. & Schreiner, C. E. Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc. Natl. Acad. Sci. 98(14), 8042–8047 (2001).
pubmed: 11438747
pmcid: 35464
doi: 10.1073/pnas.131591898
Négyessy, L. et al. Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: Neuroanatomical evidence. J. Comp. Neurol. 521(12), 2798–2817 (2013).
pubmed: 23436325
pmcid: 4157923
doi: 10.1002/cne.23317
Hubel, D. H. & Wiesel, T. N. Shape and arrangement of columns in cat’s striate cortex. J. Physiol. 165(3), 559 (1963).
pubmed: 13955384
pmcid: 1359325
doi: 10.1113/jphysiol.1963.sp007079
Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518(7539), 399–403 (2015).
pubmed: 25652823
pmcid: 4843963
doi: 10.1038/nature14182
Ts’o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6(4), 1160–1170 (1986).
pubmed: 3701413
pmcid: 6568437
doi: 10.1523/JNEUROSCI.06-04-01160.1986
Lee, W. C. et al. Anatomy and function of an excitatory network in the visual cortex. Nature 532(7599), 370–374 (2016).
pubmed: 27018655
pmcid: 4844839
doi: 10.1038/nature17192
Rioult-Pedotti, M. S., Friedman, D., Hess, G. & Donoghue, J. P. Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci. 1(3), 230–234 (1998).
pubmed: 10195148
doi: 10.1038/678
Galuske, R. A. & Singer, W. The origin and topography of long-range intrinsic projections in cat visual cortex: A developmental study. Cerebral Cortex 6(3), 417–430 (1996).
pubmed: 8670668
doi: 10.1093/cercor/6.3.417
Schmidt, K. E., Galuske, R. A. & Singer, W. Matching the modules: Cortical maps and long-range intrinsic connections in visual cortex during development. J. Neurobiol. 41(1), 10–17 (1999).
pubmed: 10504187
doi: 10.1002/(SICI)1097-4695(199910)41:1<10::AID-NEU3>3.0.CO;2-L
Onat, S., Jancke, D. & König, P. Cortical long-range interactions embed statistical knowledge of natural sensory input: A voltage-sensitive dye imaging study. F1000Research 2, 51 (2013).
pubmed: 24358899
pmcid: 3829195
doi: 10.12688/f1000research.2-51.v2
Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1), 1193–1216 (2001).
pubmed: 11520932
doi: 10.1146/annurev.neuro.24.1.1193
Brunswik, E. & Kamiya, J. Ecological cue-validity of proximity and of other Gestalt factors. Am. J. Psychol. 66(1), 20–32 (1953).
pubmed: 13030843
doi: 10.2307/1417965
Wertheimer M. Laws of organization in perceptual forms. Psycologische Forschung 4 (1923).
Wagemans, J. et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol. Bull. 138(6), 1172 (2012).
pubmed: 22845751
pmcid: 3482144
doi: 10.1037/a0029333
Todorovic, D. What is the origin of the gestalt principles. Humanamente 17, 1–20 (2011).
Elder, J. H. & Goldberg, R. M. Ecological statistics of Gestalt laws for the perceptual organization of contours. J. Vis. 2(4), 5–5 (2002).
doi: 10.1167/2.4.5
Geisler, W. S., Perry, J. S., Super, B. J. & Gallogly, D. P. Edge co-occurrence in natural images predicts contour grouping performance. Vis. Res. 41(6), 711–724 (2001).
pubmed: 11248261
doi: 10.1016/S0042-6989(00)00277-7
Krüger, N. Collinearity and parallelism are statistically significant second-order relations of complex cell responses. Neural Process. Lett. 8, 117–129 (1998).
doi: 10.1023/A:1009688428205
Sigman, M., Cecchi, G. A., Gilbert, C. D. & Magnasco, M. O. On a common circle: Natural scenes and Gestalt rules. Proc. Natl. Acad. Sci. 98(4), 1935–1940 (2001).
pubmed: 11172054
pmcid: 29360
doi: 10.1073/pnas.98.4.1935
Peterson, M. A. & Gibson, B. S. Must figure-ground organization precede object recognition? An assumption in peril. Psychol. Sci. 5(5), 253–259 (1994).
doi: 10.1111/j.1467-9280.1994.tb00622.x
Zemel, R. S., Behrmann, M., Mozer, M. C. & Bavelier, D. Experience-dependent perceptual grouping and object-based attention. J. Exp. Psychol. Hum. Percept. Perform. 28(1), 202 (2002).
doi: 10.1037/0096-1523.28.1.202
Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003).
pubmed: 18244602
doi: 10.1109/TNN.2003.820440
Yatsiuk, R. M. & Kononov, M. V. Dependence of synchronization coefficient changing on Izhikevich neuron model after-spike reset parameters for ascending information flow in cortical column. Eur. Res. 6–2, 1714–1721 (2013).
Strens, M. A Bayesian framework for reinforcement learning. InICML 2000, 943–950 (2000).
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952).
pubmed: 12991237
pmcid: 1392413
doi: 10.1113/jphysiol.1952.sp004764
Pipa, G., Wheeler, D. W., Singer, W. & Nikolić, D. NeuroXidence: Reliable and efficient analysis of an excess or deficiency of joint-spike events. J. Comput. Neurosci. 25, 64–88 (2008).
pubmed: 18219568
pmcid: 2758673
doi: 10.1007/s10827-007-0065-3