Digital pathology with artificial intelligence analysis provides insight to the efficacy of anti-fibrotic compounds in human 3D MASH model.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
11 Mar 2024
Historique:
received: 10 11 2023
accepted: 23 02 2024
medline: 12 3 2024
pubmed: 12 3 2024
entrez: 12 3 2024
Statut: epublish

Résumé

Metabolic dysfunction-associated steatohepatitis (MASH) is a severe liver disease characterized by lipid accumulation, inflammation and fibrosis. The development of MASH therapies has been hindered by the lack of human translational models and limitations of analysis techniques for fibrosis. The MASH three-dimensional (3D) InSight™ human liver microtissue (hLiMT) model recapitulates pathophysiological features of the disease. We established an algorithm for automated phenotypic quantification of fibrosis of Sirius Red stained histology sections of MASH hLiMTs model using a digital pathology quantitative single-fiber artificial intelligence (AI) FibroNest™ image analysis platform. The FibroNest™ algorithm for MASH hLiMTs was validated using anti-fibrotic reference compounds with different therapeutic modalities-ALK5i and anti-TGF-β antibody. The phenotypic quantification of fibrosis demonstrated that both reference compounds decreased the deposition of fibrillated collagens in alignment with effects on the secretion of pro-collagen type I/III, tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-3 and pro-fibrotic gene expression. In contrast, clinical compounds, Firsocostat and Selonsertib, alone and in combination showed strong anti-fibrotic effects on the deposition of collagen fibers, however less pronounced on the secretion of pro-fibrotic biomarkers. In summary, the phenotypic quantification of fibrosis of MASH hLiMTs combined with secretion of pro-fibrotic biomarkers and transcriptomics represents a promising drug discovery tool for assessing anti-fibrotic compounds.

Identifiants

pubmed: 38467661
doi: 10.1038/s41598-024-55438-2
pii: 10.1038/s41598-024-55438-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5885

Informations de copyright

© 2024. The Author(s).

Références

Fraile, J. M., Palliyil, S., Barelle, C., Porter, A. J. & Kovaleva, M. Non-alcoholic steatohepatitis (NASH)—A review of a crowded clinical landscape, driven by a complex disease. Drug Des. Devel. Ther. 15, 3997–4009 (2021).
pubmed: 34588764 pmcid: 8473845 doi: 10.2147/DDDT.S315724
Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 52(5), 1836–1846 (2010).
pubmed: 21038418 doi: 10.1002/hep.24001
Cho, H. J. et al. Bioengineered multicellular liver microtissues for modeling advanced hepatic fibrosis driven through non-alcoholic fatty liver disease. Small. 17(14), e2007425 (2021).
pubmed: 33690979 pmcid: 8035291 doi: 10.1002/smll.202007425
Marchesini, G. & Marzocchi, R. Metabolic syndrome and NASH. Clin. Liver Dis. 11(1), 105–117 (2007).
pubmed: 17544974 doi: 10.1016/j.cld.2007.02.013
Kovalic, A. J., Banerjee, P., Tran, Q. T., Singal, A. K. & Satapathy, S. K. Genetic and epigenetic culprits in the pathogenesis of nonalcoholic fatty liver disease. J. Clin. Exp. Hepatol. 8(4), 390–402 (2018).
pubmed: 30564000 pmcid: 6286466 doi: 10.1016/j.jceh.2018.04.001
Farrell, G. et al. Mouse models of nonalcoholic steatohepatitis: Toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology. 69(5), 2241–2257 (2019).
pubmed: 30372785 doi: 10.1002/hep.30333
Jahn, D., Kircher, S., Hermanns, H. M. & Geier, A. Animal models of NAFLD from a hepatologist’s point of view. Biochim. Biophys. Acta Mol. Basis Dis. 1865(5), 943–953 (2019).
pubmed: 29990551 doi: 10.1016/j.bbadis.2018.06.023
Boeckmans, J. et al. Human-based systems: Mechanistic NASH modelling just around the corner?. Pharmacol. Res. 134, 257–267 (2018).
pubmed: 29964161 doi: 10.1016/j.phrs.2018.06.029
Van Herck, M. A., Vonghia, L. & Francque, S. M. Animal models of nonalcoholic fatty liver disease—A Starter’s guide. Nutrients. 9(10), 1072 (2017).
pubmed: 28953222 pmcid: 5691689 doi: 10.3390/nu9101072
Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24(7), 908–922 (2018).
pubmed: 29967350 pmcid: 6553468 doi: 10.1038/s41591-018-0104-9
Takahashi, Y., Soejima, Y. & Fukusato, T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 18(19), 2300–2308 (2012).
pubmed: 22654421 pmcid: 3353364 doi: 10.3748/wjg.v18.i19.2300
Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: Transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Invest. 133(21), e175824 (2023).
pubmed: 37909337 pmcid: 10617761 doi: 10.1172/JCI175824
Ströbel, S. et al. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci. Rep. 11(1), 22765 (2021).
pubmed: 34815444 pmcid: 8611054 doi: 10.1038/s41598-021-01951-7
Mukherjee, S. et al. Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype. Am. J. Transl. Res. 11(3), 1531–1540 (2019).
pubmed: 30972180 pmcid: 6456529
Malhi, H., Bronk, S. F., Werneburg, N. W. & Gores, G. J. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281(17), 12093–12101 (2006).
pubmed: 16505490 doi: 10.1074/jbc.M510660200
Gressner, A. M. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: A key event in hepatic fibrogenesis. Kidney Int. Suppl. 54, S39-45 (1996).
pubmed: 8731193
Dooley, S., Streckert, M., Delvoux, B. & Gressner, A. M. Expression of Smads during in vitro transdifferentiation of hepatic stellate cells to myofibroblasts. Biochem. Biophys. Res. Commun. 283(3), 554–562 (2001).
pubmed: 11341760 doi: 10.1006/bbrc.2001.4811
Messner, S., Agarkova, I., Moritz, W. & Kelm, J. M. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch. Toxicol. 87(1), 209–213 (2013).
pubmed: 23143619 doi: 10.1007/s00204-012-0968-2
Messner, S. et al. Transcriptomic, proteomic, and functional long-term characterization of multicellular three-dimensional human liver microtissues. Appl. In Vitro Toxicol. 4(1), 1–12 (2018).
pubmed: 32953943 pmcid: 7500040 doi: 10.1089/aivt.2017.0022
Soon, G. & Wee, A. Updates in the quantitative assessment of liver fibrosis for nonalcoholic fatty liver disease: Histological perspective. Clin. Mol. Hepatol. 27(1), 44–57 (2021).
pubmed: 33207115 doi: 10.3350/cmh.2020.0181
Briand, F. et al. Elafibranor improves diet-induced nonalcoholic steatohepatitis associated with heart failure with preserved ejection fraction in Golden Syrian hamsters. Metabolism. 117, 154707 (2021).
pubmed: 33444606 doi: 10.1016/j.metabol.2021.154707
Inia, J. A. et al. Semaglutide has beneficial effects on non-alcoholic steatohepatitis in Ldlr-/-. Leiden mice. Int. J. Mol. Sci. 24(10), 8494 (2023).
pubmed: 37239841 pmcid: 10218334 doi: 10.3390/ijms24108494
Nakamura, Y. et al. Automated fibrosis phenotyping of liver tissue from non-tumor lesions of patients with and without hepatocellular carcinoma after liver transplantation for non-alcoholic fatty liver disease. Hepatol. Int. 16(3), 555–561 (2022).
pubmed: 35553006 doi: 10.1007/s12072-022-10340-9
Wang, S. et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 15(677), eadd3949 (2023).
pubmed: 36599008 pmcid: 10686705 doi: 10.1126/scitranslmed.add3949
Roth, J. D. et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J. Gastroenterol. 24(2), 195–210 (2018).
pubmed: 29375205 pmcid: 5768938 doi: 10.3748/wjg.v24.i2.195
Paish, H. L. et al. A bioreactor technology for modeling fibrosis in human and rodent precision-cut liver slices. Hepatology. 70(4), 1377–1391 (2019).
pubmed: 30963615 doi: 10.1002/hep.30651
Dooley, S., Delvoux, B., Lahme, B., Mangasser-Stephan, K. & Gressner, A. M. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology. 31(5), 1094–1106 (2000).
pubmed: 10796885 doi: 10.1053/he.2000.6126
Alkhouri, N., Lawitz, E., Noureddin, M., DeFronzo, R. & Shulman, G. I. GS-0976 (Firsocostat): An investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs 29(2), 135–141 (2020).
pubmed: 31519114 doi: 10.1080/13543784.2020.1668374
Yoon, Y. C. et al. Selonsertib inhibits liver fibrosis via downregulation of ASK1/ MAPK pathway of hepatic stellate cells. Biomol. Ther. (Seoul) 28(6), 527–536 (2020).
pubmed: 32451370 doi: 10.4062/biomolther.2020.016
Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology. 67(2), 549–559 (2018).
pubmed: 28892558 doi: 10.1002/hep.29514
Harrison, S. A. et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J. Hepatol. 73(1), 26–39 (2020).
pubmed: 32147362 doi: 10.1016/j.jhep.2020.02.027
Yilmaz, Y. & Eren, F. Serum biomarkers of fibrosis and extracellular matrix remodeling in patients with nonalcoholic fatty liver disease: Association with liver histology. Eur. J. Gastroenterol. Hepatol. 31(1), 43–46 (2019).
pubmed: 30134384 doi: 10.1097/MEG.0000000000001240
Kramerova, I. et al. Spp1 (osteopontin) promotes TGFβ processing in fibroblasts of dystrophin-deficient muscles through matrix metalloproteinases. Hum. Mol. Genet. 28(20), 3431–3442 (2019).
pubmed: 31411676 pmcid: 7345878 doi: 10.1093/hmg/ddz181
Munsterman, I. D. et al. Extracellular matrix components indicate remodelling activity in different fibrosis stages of human non-alcoholic fatty liver disease. Histopathology. 73(4), 612–621 (2018).
pubmed: 29856896 doi: 10.1111/his.13665
Rittié, L. Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol. Biol. 1627, 395–407 (2017).
pubmed: 28836216 doi: 10.1007/978-1-4939-7113-8_26
Ratziu, V. et al. Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: Current status and future directions. J. Hepatol. 80, 335 (2023).
pubmed: 37879461 doi: 10.1016/j.jhep.2023.10.015
Kjaergaard, M. et al. Using the ELF test, FIB-4 and NAFLD fibrosis score to screen the population for liver disease. J. Hepatol. 79(2), 277–286 (2023).
pubmed: 37088311 doi: 10.1016/j.jhep.2023.04.002
de Almeida, I. T., Cortez-Pinto, H., Fidalgo, G., Rodrigues, D. & Camilo, M. E. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin. Nutr. 21(3), 219–223 (2002).
pubmed: 12127930 doi: 10.1054/clnu.2001.0529
Dewidar, B., Meyer, C., Dooley, S. & Meindl-Beinker, A. N. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 8(11), 1418 (2019).
doi: 10.3390/cells8111419
Mak, K. M. & Mei, R. Basement membrane type IV collagen and laminin: An overview of their biology and value as fibrosis biomarkers of liver disease. Anat. Rec. (Hoboken). 300(8), 1371–1390 (2017).
pubmed: 28187500 doi: 10.1002/ar.23567
Bianchi, F. B. et al. Basement membrane production by hepatocytes in chronic liver disease. Hepatology. 4(6), 1167–1172 (1984).
pubmed: 6500509 doi: 10.1002/hep.1840040612
Naim, A., Pan, Q. & Baig, M. S. Matrix metalloproteinases (MMPs) in liver diseases. J. Clin. Exp. Hepatol. 7(4), 367–372 (2017).
pubmed: 29234202 pmcid: 5715451 doi: 10.1016/j.jceh.2017.09.004
Giannandrea, M. & Parks, W. C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 7(2), 193–203 (2014).
pubmed: 24713275 pmcid: 3917240 doi: 10.1242/dmm.012062
Lefebvre, P. et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight. 2(13), e92264 (2017).
pubmed: 28679947 pmcid: 5499370 doi: 10.1172/jci.insight.92264
Yu, M. et al. Biglycan promotes hepatic fibrosis through activating heat shock protein 47. Liver Int. 43(2), 500–512 (2023).
pubmed: 36371672 doi: 10.1111/liv.15477
Thiele, M. et al. Progressive alcohol-related liver fibrosis is characterised by imbalanced collagen formation and degradation. Aliment. Pharmacol. Ther. 54(8), 1070–1080 (2021).
pubmed: 34428307 pmcid: 9292476 doi: 10.1111/apt.16567
Chen, W. et al. Lysyl oxidase (LOX) family members: Rationale and their potential as therapeutic targets for liver fibrosis. Hepatology. 72(2), 729–741 (2020).
pubmed: 32176358 doi: 10.1002/hep.31236
Jensen, C. et al. Cross-linked multimeric pro-peptides of type III collagen (PC3X) in hepatocellular carcinoma—A biomarker that provides additional prognostic value in AFP positive patients. J Hepatocell Carcinoma. 7, 301–313 (2020).
pubmed: 33204663 pmcid: 7665576 doi: 10.2147/JHC.S275008
Sakai, M., Sumiyoshi, T., Aoyama, T., Urayama, K. & Yoshimura, R. GPR91 antagonist and TGF-β inhibitor suppressed collagen production of high glucose and succinate induced HSC activation. Biochem. Biophys. Res. Commun. 530(2), 362–366 (2020).
pubmed: 32798017 doi: 10.1016/j.bbrc.2020.07.141
Mahdy, M. A. A., Warita, K. & Hosaka, Y. Z. Neutralization of transforming growth factor (TGF)-β1 activity reduced fibrosis and enhanced regeneration of glycerol-injured rat muscle. J. Vet. Med. Sci. 82(2), 168–171 (2020).
pubmed: 31875598 doi: 10.1292/jvms.19-0446
Zhang, H. & Liu, Z. L. Transforming growth factor-β neutralizing antibodies inhibit subretinal fibrosis in a mouse model. Int. J. Ophthalmol. 5(3), 307–311 (2012).
pubmed: 22773978 pmcid: 3388398
Wang, Y. et al. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed. Pharmacother. 171, 116116 (2024).
pubmed: 38181715 doi: 10.1016/j.biopha.2023.116116
Tauber, S. et al. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors. PLoS ONE 7(11), e48272 (2012).
pubmed: 23139770 pmcid: 3491062 doi: 10.1371/journal.pone.0048272
Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155(5), 1463-1473.e6 (2018).
pubmed: 30059671 doi: 10.1053/j.gastro.2018.07.027
Lawitz, E. J. et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 16(12), 1983-1991.e3 (2018).
pubmed: 29705265 doi: 10.1016/j.cgh.2018.04.042
Bates, J. et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J. Hepatol. 73(4), 896–905 (2020).
pubmed: 32376414 doi: 10.1016/j.jhep.2020.04.037
Ross, T. T. et al. Acetyl-CoA carboxylase inhibition improves multiple dimensions of NASH pathogenesis in model systems. Cell. Mol. Gastroenterol. Hepatol. 10(4), 829–851 (2020).
pubmed: 32526482 pmcid: 7509217 doi: 10.1016/j.jcmgh.2020.06.001
Younossi, Z. M. et al. Improvement of hepatic fibrosis and patient-reported outcomes in non-alcoholic steatohepatitis treated with selonsertib. Liver Int. 38(10), 1849–1859 (2018).
pubmed: 29377462 doi: 10.1111/liv.13706
Lin, R. Z. & Chang, H. Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3(9–10), 1172–1184 (2008).
pubmed: 18566957 doi: 10.1002/biot.200700228
Kelm, J. M. & Fussenegger, M. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol. 22(4), 195–202 (2004).
pubmed: 15038925 doi: 10.1016/j.tibtech.2004.02.002
BioSpyder website. https://www.biospyder.com/ .
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Leek, J. T., Johnson, W. E., Parker, H. S., Fertig, E. J. & Andrew, E. sva: Surrogate Variable Analysis (2020). R package version 3.36.0 (2020).
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16(5), 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 27(12), 1739–1740 (2011).
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
Nishimura, D. BioCarta. Biotech Softw. Internet Rep. 2(3), 117–120 (2001).
doi: 10.1089/152791601750294344
Schaefer, C. F. et al. PID: The pathway interaction database. Nucleic Acids Res. 37(Database issue), D674–D679 (2009).
pubmed: 18832364 doi: 10.1093/nar/gkn653
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48(D1), D498-d503 (2020).
pubmed: 31691815
Martens, M. et al. WikiPathways: Connecting communities. Nucleic Acids Res. 49(D1), D613-d621 (2021).
pubmed: 33211851 doi: 10.1093/nar/gkaa1024
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological). 57(1), 289–300 (1995).
Mulisch, M. & Welsch, U. Romeis - Mikroskopische Technik (Spektrum Akademischer Verlag, 2010).
Kiernan, J. A. Histological and Histochemical Methods: Theory and Practice 3rd edn. (Butterworth-Heinemann, 1999).

Auteurs

Radina Kostadinova (R)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland. radina.kostadinova@insphero.com.

Simon Ströbel (S)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland.

Li Chen (L)

PharmaNest, Princeton, NJ, USA.

Katia Fiaschetti-Egli (K)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland.

Jana Gadient (J)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland.

Agnieszka Pawlowska (A)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland.

Louis Petitjean (L)

PharmaNest, Princeton, NJ, USA.

Manuela Bieri (M)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland.

Eva Thoma (E)

InSphero AG, Wagistrasse 27A, Schlieren, Switzerland.

Mathieu Petitjean (M)

PharmaNest, Princeton, NJ, USA.

Classifications MeSH