One sixth of Amazonian tree diversity is dependent on river floodplains.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
11 Mar 2024
11 Mar 2024
Historique:
received:
23
03
2023
accepted:
09
02
2024
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
aheadofprint
Résumé
Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
Identifiants
pubmed: 38467713
doi: 10.1038/s41559-024-02364-1
pii: 10.1038/s41559-024-02364-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-25-01
Informations de copyright
© 2024. The Author(s).
Références
Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J. & Parolin, P. Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management (Springer, 2010).
Salo, J. et al. River dynamics and the diversity of the Amazon lowland forest. Nature 322, 245–258 (1986).
doi: 10.1038/322254a0
Gentry, A. Changes in plant community diversity and floristic composition on environmental and geographic gradients. Ann. Mo. Bot. Gard. 75, 1–34 (1988).
doi: 10.2307/2399464
Wittmann, F. et al. Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J. Biogeogr. 33, 1334–1347 (2006).
doi: 10.1111/j.1365-2699.2006.01495.x
Meave, J., Kellman, M., MacDougall, A. & Rosales, J. Riparian habitats as tropical forest refugia. Glob. Ecol. Biogeogr. Lett. 1, 69–76 (1991).
doi: 10.2307/2997492
Ferreira, C. S., Piedade, M. T. F., Junk, W. J. & Parolin, P. Floodplain and upland populations of Amazonian Himatanthus sucuuba: effects of flooding on germination, seedling growth and mortality. Environ. Exp. Bot. 60, 477–483 (2007).
doi: 10.1016/j.envexpbot.2007.01.005
Wittmann, F. et al. Habitat specificity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography 36, 690–707 (2013).
doi: 10.1111/j.1600-0587.2012.07723.x
Kubitzki, K. The ecogeographical differentiation of Amazonian inundation forests. Plant Syst. Evol. 163, 285–304 (1989).
doi: 10.1007/BF00936922
Terborgh, J. & Andresen, E. The composition of Amazonian forests: patterns at local and regional scales. J. Trop. Ecol. 14, 645–664 (1998).
doi: 10.1017/S0266467498000455
Fine, P. V. A., Zapata, F. & Daly, D. C. Investigating processes of Neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). Evolution 68, 1988–2004 (2014).
pubmed: 24689871
doi: 10.1111/evo.12414
Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).
pubmed: 28617466
doi: 10.1038/nature22333
Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).
doi: 10.1002/joc.4420
Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).
pubmed: 30255149
pmcid: 6155052
doi: 10.1126/sciadv.aat8785
Junk, W. J. & Piedade, M. T. F. Status of knowledge, ongoing research, and research needs in Amazonian wetlands. Wetl. Ecol. Manage. 12, 597–609 (2004).
doi: 10.1007/s11273-005-1767-9
Killeen, T. J. & Solórzando, L. A. Conservation strategies to mitigate impacts from climate change in Amazonia. Proc. Natl Acad. Sci. USA 363, 1881–1888 (2008).
Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229 (2013).
doi: 10.1111/conl.12008
Correa, S. B. et al. Biotic indicators for ecological state change in Amazonian floodplains. Bioscience 72, 753–768 (2022).
pubmed: 35923189
pmcid: 9343230
doi: 10.1093/biosci/biac038
Householder, J. E. et al. Modeling the ecological responses of tree species to the flood pulse of the Amazon Negro River floodplains. Front. Ecol. Evol. 9, 628606 (2021).
doi: 10.3389/fevo.2021.628606
Luize, B. G. et al. The tree species pool of Amazonian wetlands forests: which species can assemble in periodically waterlogged habitats? PLoS ONE 13, e0198130 (2018).
pubmed: 29813116
pmcid: 5973586
doi: 10.1371/journal.pone.0198130
McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
doi: 10.1146/annurev.ecolsys.28.1.495
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).
pubmed: 26701706
doi: 10.1016/j.tree.2015.11.005
Ter Steege, H. et al. Hyper-dominance in the Amazonian tree flora. Science 342, 325–334 (2013).
Pitman, N. C. A., Terborgh, J., Silman, M. R. & Nunez, P. Tree species distributions in an upper Amazonian forest. Ecology 80, 2651–2661 (1999).
doi: 10.1890/0012-9658(1999)080[2651:TSDIAU]2.0.CO;2
Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood-pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127 (1989).
Junk, W. J. et al. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31, 623–640 (2011).
doi: 10.1007/s13157-011-0190-7
Frappart, F., Seoane, L. & Ramillien, G. Validation of GRACE-derived water mass storage using a regional approach over South America. Remote Sens. Environ. 137, 69–83 (2013).
doi: 10.1016/j.rse.2013.06.008
Cade, B. S., Terrel, J. W. & Schrowder, R. L. Estimating effects of limiting factors with regression quantiles. Ecology 80, 311–323 (1999).
doi: 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2
Ter Steege, H. et al. A spatial model of tree alpha diversity and tree density for the Amazon. Biodivers. Conserv. 12, 2255–2277 (2003).
doi: 10.1023/A:1024593414624
De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).
pubmed: 20120823
doi: 10.1890/08-1823.1
Silva de Miranda, P. L. et al. Dissecting the difference in tree species richness between Africa and South America. Proc. Natl Acad. Sci. USA 119, e2112336119 (2022).
pubmed: 35349336
pmcid: 9168492
doi: 10.1073/pnas.2112336119
Peres, C. A. & Terborgh, J. Amazonian nature reserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv. Biol. 9, 34–46 (1995).
doi: 10.1046/j.1523-1739.1995.09010034.x
Timple, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 3, e1700611 (2017).
doi: 10.1126/sciadv.1700611
Schöngart, J. et al. The shadow of the Balbina dam: a synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1117–1135 (2021).
doi: 10.1002/aqc.3526
Wahr, J., Molenaar, M. & Bryan, F. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 103, 30205–30229 (1998).
doi: 10.1029/98JB02844
de Paiva, R. C. D. et al. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour. Res. 49, 1226–1243 (2013).
doi: 10.1002/wrcr.20067
Fick, S. E. & Hijmans, R. J. WorldClim2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Gomes, V. H. F. et al. Species distribution modelling: contrasting presence–absence only models with plot abundance data. Sci. Rep. 8, 1003 (2018).
pubmed: 29343741
pmcid: 5772443
doi: 10.1038/s41598-017-18927-1
Simpson, G. G. Notes on the measurement of faunal resemblance. Am. J. Sci. 258, 300–311 (1960).
R Core Team. R: A Language and Environment for Statistical Computing v.4.1.2 (R Foundation for Statistical Computing, 2021).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 (2020).
Koenker, R. quantreg: Quantile regression. R package version 5.88 (2022).
Hijmans, R. J. raster: Geographic data analysis and modeling. Version 3.6-26. R package (2021).
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ data abstraction library. Version 1.5-8. R package (2021).
Pebesma, E. J. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 30, 683–691 (2004).
doi: 10.1016/j.cageo.2004.03.012
Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. R J. 8, 204–218 (2016).
doi: 10.32614/RJ-2016-014
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406
doi: 10.1093/bioinformatics/bty633
Melack, J. M. & Hess, L. L. in Amazonian Floodplain Forests: Ecological Studies (Analysis and Synthesis) (eds Junk, W. et al.) 43–59 (Springer, 2010).
Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).