Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
11 Mar 2024
Historique:
received: 30 10 2023
accepted: 28 02 2024
revised: 23 02 2024
medline: 12 3 2024
pubmed: 12 3 2024
entrez: 12 3 2024
Statut: aheadofprint

Résumé

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.

Identifiants

pubmed: 38467769
doi: 10.1038/s41375-024-02211-z
pii: 10.1038/s41375-024-02211-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
ID : Fellow Award
Organisme : Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
ID : Scholar Award
Organisme : U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine (NLM)
ID : T15 LM0077033-40
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R00CA252005
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : 5R00CA248460
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : F32CA250304
Organisme : American Society of Hematology (ASH)
ID : Graduate Hematology Award

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

SEER. Acute myeloid leukemia - cancer stat facts. https://seer.cancer.gov/statfacts/html/amyl.html . 2023.
Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25:379–92.
doi: 10.1016/j.ccr.2014.01.031 pubmed: 24613412 pmcid: 3983786
Quek L, David MD, Kennedy A, Metzner M, Amatangelo M, Shih A, et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med. 2018;24:1167–77.
doi: 10.1038/s41591-018-0115-6 pubmed: 30013198 pmcid: 6925974
Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–77.
doi: 10.1182/blood.2022016867 pubmed: 35797463
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.
doi: 10.1056/NEJMoa1516192 pubmed: 27276561 pmcid: 4979995
Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372:601–12.
doi: 10.1056/NEJMoa1412098 pubmed: 25671252 pmcid: 4660033
Nagata Y, Makishima H, Kerr CM, Przychodzen BP, Aly M, Goyal A, et al. Invariant patterns of clonal succession determine specific clinical features of myelodysplastic syndromes. Nat Commun. 2019;10:5386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879617/ .
doi: 10.1038/s41467-019-13001-y pubmed: 31772163 pmcid: 6879617
Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111:2548–53.
doi: 10.1073/pnas.1324297111 pubmed: 24550281 pmcid: 3932921
Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.
doi: 10.1038/nature13038 pubmed: 24522528 pmcid: 4991939
Morita K, Wang F, Jahn K, Hu T, Tanaka T, Sasaki Y, et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020;11:5327.
doi: 10.1038/s41467-020-19119-8 pubmed: 33087716 pmcid: 7577981
Ediriwickrema A, Aleshin A, Reiter JG, Corces MR, Köhnke T, Stafford M, et al. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 2020;4:943–52.
doi: 10.1182/bloodadvances.2019001181 pubmed: 32150611 pmcid: 7065471
Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020;587:477–82.
doi: 10.1038/s41586-020-2864-x pubmed: 33116311 pmcid: 7677169
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Auwera GAV der, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018; https://www.biorxiv.org/content/early/2018/07/24/201178 .
Morita K, Kantarjian HM, Wang F, Yan Y, Bueso-Ramos C, Sasaki K, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018;36:1788–97.
doi: 10.1200/JCO.2017.77.6757 pubmed: 29702001 pmcid: 6008108
Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013;122:3616–27.
doi: 10.1182/blood-2013-08-518886 pubmed: 24030381 pmcid: 3837510
Jahn K, Kuipers J, Beerenwinkel N. Tree inference for single-cell data. Genome Biol. 2016;17:86.
doi: 10.1186/s13059-016-0936-x pubmed: 27149953 pmcid: 4858868
Kuipers J, Jahn K, Raphael BJ, Beerenwinkel N. Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. 2017;27:1885–94.
doi: 10.1101/gr.220707.117 pubmed: 29030470 pmcid: 5668945
Csardi G, Nepusz T. The igraph software package for complex network research. Int. J. Complex Syst. 2006;1695:1–9.
Read TRC, Cressie NAC. Goodness-of-fit statistics for discrete multivariate data. Springer New York; 1988. (Springer Series in Statistics). https://books.google.com/books?id/=_ce8QgAACAAJ .
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. 2013. https://www.nejm.org/doi/10.1056/NEJMoa1301689 .
Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, Johnson K, et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell. 2022;40:850–864.e9.
doi: 10.1016/j.ccell.2022.07.002 pubmed: 35868306 pmcid: 9378589
Jawad M, Afkhami M, Ding Y, Zhang X, Li P, Young K, et al. DNMT3A R882 mutations confer unique clinicopathologic features in MDS including a high risk of AML transformation. Front Oncol. 2022;12:849376.
doi: 10.3389/fonc.2022.849376 pubmed: 35296003 pmcid: 8918526
Fowler JC, King C, Bryant C, Hall M, Sood R, Ong SH, et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 2021;11:340–61.
doi: 10.1158/2159-8290.CD-20-1092 pubmed: 33087317
Mims AS, Kohlschmidt J, Borate U, Blachly JS, Orwick S, Eisfeld AK, et al. A precision medicine classification for treatment of acute myeloid leukemia in older patients. J Hematol Oncol. 2021;14:96.
doi: 10.1186/s13045-021-01110-5 pubmed: 34162404 pmcid: 8220739
Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61:7233–9.
pubmed: 11585760
El Hussein S, DiNardo CD, Takahashi K, Khoury JD, Fang H, Furudate K, et al. Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplant. 2022;57:370–6.
doi: 10.1038/s41409-021-01538-w pubmed: 34992253
Rampal R, Figueroa ME. Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia. Haematologica. 2016;101:672–9.
doi: 10.3324/haematol.2015.141796 pubmed: 27252512 pmcid: 5013955
Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood. 2023;141:345–55.
doi: 10.1182/blood.2021014670 pubmed: 35926108
Schranz K, Hubmann M, Harin E, Vosberg S, Herold T, Metzeler KH, et al. Clonal heterogeneity of FLT3-ITD detected by high-throughput amplicon sequencing correlates with adverse prognosis in acute myeloid leukemia. Oncotarget. 2018;9:30128–45.
doi: 10.18632/oncotarget.25729 pubmed: 30046393 pmcid: 6059024
Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100:2393–8.
doi: 10.1182/blood-2002-02-0420 pubmed: 12239147
Benard BA, Leak LB, Azizi A, Thomas D, Gentles AJ, Majeti R. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun. 2021;12:7244.
doi: 10.1038/s41467-021-27472-5 pubmed: 34903734 pmcid: 8669028
Paschka P, Du J, Schlenk RF, Gaidzik VI, Bullinger L, Corbacioglu A, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Blood. 2013;121:170–7.
doi: 10.1182/blood-2012-05-431486 pubmed: 23115274
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.
doi: 10.1038/s41375-022-01613-1 pubmed: 35732831 pmcid: 9252913
Dillon LW, Ghannam J, Nosiri C, Gui G, Goswami M, Calvo KR, et al. Personalized single-cell proteogenomics to distinguish acute myeloid leukemia from non-malignant clonal hematopoiesis. Blood Cancer Discov. 2021;2:319–25.
doi: 10.1158/2643-3230.BCD-21-0046 pubmed: 34258102 pmcid: 8265308
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol. 2020;11:2040620719899818.
doi: 10.1177/2040620719899818 pubmed: 32071709 pmcid: 6997955
Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022;606:335–42.
doi: 10.1038/s41586-022-04785-z pubmed: 35650444 pmcid: 9177423
Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022;602:162–8.
doi: 10.1038/s41586-021-04312-6 pubmed: 35058638
van Galen P, Hovestadt V, Wadsworth M, Hughes T, Griffin GK, Battaglia S, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176:1265–81.e24.
doi: 10.1016/j.cell.2019.01.031 pubmed: 30827681 pmcid: 6515904
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.
doi: 10.1182/blood-2016-08-733196 pubmed: 27895058 pmcid: 5291965

Auteurs

Matthew Schwede (M)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA.

Katharina Jahn (K)

Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany.
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Jack Kuipers (J)

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Linde A Miles (LA)

Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.

Robert L Bowman (RL)

Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Troy Robinson (T)

Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Ken Furudate (K)

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Hidetaka Uryu (H)

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Tomoyuki Tanaka (T)

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Yuya Sasaki (Y)

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Asiri Ediriwickrema (A)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Brooks Benard (B)

Department of Pathology, Stanford University, Stanford, CA, USA.

Andrew J Gentles (AJ)

Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA.
Department of Pathology, Stanford University, Stanford, CA, USA.
Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA.

Ross Levine (R)

Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Niko Beerenwinkel (N)

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. niko.beerenwinkel@bsse.ethz.ch.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland. niko.beerenwinkel@bsse.ethz.ch.

Koichi Takahashi (K)

Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. KTakahashi@mdanderson.org.

Ravindra Majeti (R)

Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA. rmajeti@stanford.edu.
Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. rmajeti@stanford.edu.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA. rmajeti@stanford.edu.

Classifications MeSH