Clinical Sensitivity of Fractal Neurodynamics.
Body organization
Brain
Higuchi fractal dimension
Neurological and psychiatric disorders
Neuronal networks
Neurophysiology
Journal
Advances in neurobiology
ISSN: 2190-5215
Titre abrégé: Adv Neurobiol
Pays: United States
ID NLM: 101571545
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
ppublish
Résumé
Among the significant advances in the understanding of the organization of the neuronal networks that coordinate the body and brain, their complex nature is increasingly important, resulting from the interaction between the very large number of constituents strongly organized hierarchically and at the same time with "self-emerging." This awareness drives us to identify the measures that best quantify the "complexity" that accompanies the continuous evolutionary dynamics of the brain. In this chapter, after an introductory section (Sect. 15.1), we examine how the Higuchi fractal dimension is able to perceive physiological processes (15.2), neurological (15.3) and psychiatric (15.4) disorders, and neuromodulation effects (15.5), giving a mention of other methods of measuring neuronal electrical activity in addition to electroencephalography, such as magnetoencephalography and functional magnetic resonance. Conscious that further progress will support a deeper understanding of the temporal course of neuronal activity because of continuous interaction with the environment, we conclude confident that the fractal dimension has begun to uncover important features of the physiology of brain activity and its alterations.
Identifiants
pubmed: 38468039
doi: 10.1007/978-3-031-47606-8_15
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
285-312Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005;116:2266–301.
pubmed: 16115797
doi: 10.1016/j.clinph.2005.06.011
He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66:353–69.
pubmed: 20471349
pmcid: 2878725
doi: 10.1016/j.neuron.2010.04.020
Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2014;20(4):403–17.
pubmed: 24362815
doi: 10.1177/1073858413513927
Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martin-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21(1):30–43.
pubmed: 24362814
doi: 10.1177/1073858413513928
Pritchard WS, Duke DW. Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci. 1992;67(1–4):31.
pubmed: 1305639
doi: 10.3109/00207459208994774
Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D. 1988;31:277–83.
doi: 10.1016/0167-2789(88)90081-4
Inouye T, et al. Changes in the fractal dimension of alpha-envelope from wakefulness to drowsiness in the human electroencephalogram. Neurosci Lett. 1994;174(1):105–8.
pubmed: 7970142
doi: 10.1016/0304-3940(94)90130-9
Klonowski W, Olejarczyk E, Stepien R. Complexity of EEG-signal in time domain—possible biomedical application. AIP Conf Proc. 2002;622:155–60.
doi: 10.1063/1.1487530
Klonowski W, Olejarczyk E, Stepien R, et al. New methods of nonlinear and symbolic dynamics in sleep EEG-signal analysis. In: Feng D, editor. Modelling and control in biomedical systems 2003 (including biological systems), vol. 36. Carson ER. IFAC Symposia Series; 2003. p. 241–4.
Klonowski W, Olejarczyk E, Stepien R, Szelenberger W. Complexity of Polysomnogram signals. WSEAS Trans Comput. 2004;3(5):1290–4.
Olejarczyk E. Analysis of EEG signals using fractal dimension. Warsaw: PhD Thesis, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences; 2003.
Olejarczyk E. Fractal dimension in time domain—application. In: EEG-signal analysis classification and application of fractals. Nova Science Publishers; 2011. p. 161–85.
Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring systems for Sleep Stages of human subjects. Los Angeles: National Government Publication; 1968.
Kronholm E, et al. Spectral power and fractal dimension: methodological comparison in a sample of normal sleepers and chronic insomniacs. Sleep Biol Rhythms. 2007;5(4):239–50.
doi: 10.1111/j.1479-8425.2007.00317.x
Bojic T, Vuckovic A, Kalauzi A. Modeling EEG fractal dimension changes in wake and drowsy states in humans - a preliminary study. J Theor Biol. 2010;262(2):214–22.
pubmed: 19822155
doi: 10.1016/j.jtbi.2009.10.001
Sevcik C. A procedure to estimate the fractal dimension of waveforms. Complex Int. 1998;5(1):1–19.
Hekmatmanesh A, Mikaeili M, Sadeghniiat-Haghighi K, Wu HP, Handroos H, Martinek R, Nazeran H. Sleep spindle detection and prediction using a mixture of time series and chaotic features. Adv Electr Electron Eng. 2017;15(3):435–47.
Croce P, Quercia A, Costa S, Zappasodi F. Circadian rhythms in fractal features of EEG signals. Front Physiol. 2018;9:1567.
pubmed: 30483146
pmcid: 6240683
doi: 10.3389/fphys.2018.01567
Jain R, Ganesan RA. An efficient sleep scoring method using visibility graph and temporal features of single-channel EEG. IEEE Engineering in Medicine and Biology Society Conference Proceedings; 2021. p. 6306–9.
Olejarczyk E, Gotman J, Frauscher B. Region-specific complexity of the intracranial EEG in the sleeping human brain. Sci Rep. 2022;12(1):451.
pubmed: 35013431
pmcid: 8748934
doi: 10.1038/s41598-021-04213-8
Armonaite K, Nobili L, Paulon L, Balsi M, Conti L, Tecchio F. Local neurodynamics as a signature of cortical areas: new insights from sleep. Cereb Cortex. 2022;33:3284.
doi: 10.1093/cercor/bhac274
Rudner R, Jalowiecki P, Willand M, Klonowski W, Olejarczyk E, Stepien R, Hagihira S. Fractal dimension – a new EEG-based method of assessing depth of anaesthesia in comparison with BIS during induction and recovery from anaesthesia. Eur J Anaesthesiol. 2005;22(suppl. 34):32–3.
doi: 10.1097/00003643-200505001-00114
Klonowski W, Olejarczyk E, Stepien R, Jalowiecki P, Rudner R. Monitoring the depth of anaesthesia using fractal complexity method. In: Novak MN, editor. Complexus mundi. Emergent patterns in nature. New Jersey, London, Singapore, ISBN 981-256-666-X: World Scientific; 2006. p. 333–42.
doi: 10.1142/9789812774217_0031
Willand M, Rudner R, Olejarczyk E, Wartak M, Marciniak R, Stasiowski M, Byrczek T, Jalowiecki P. Fractal dimension – a new EEG-based method of assessing the depth of anaesthesia. Anaesthesiol. Intensive Ther. 2008;4:217–22.
Ferenets R, Vanluchene A, Lipping T, Heyse B, Struys MM. Behavior of entropy/complexity measures of the electroencephalogram during propofol-induced sedation: dose-dependent effects of remifentanil. Anesthesiology. 2007;106:696–706.
pubmed: 17413907
doi: 10.1097/01.anes.0000264790.07231.2d
Woodforth I, Hicks R, Crawford M, Stephen J, Burke D. Electroencephalographic evidence of seizure activity under deep sevoflurane anesthesia in a nonepileptic patient. Anesthesiology. 1997;87:1579–82.
pubmed: 9416747
doi: 10.1097/00000542-199712000-00041
Yli-Hankala A, Vakkuri A, Sarkela M, Lindgren L, Korttila K, Jantti V. Epileptiform electroencephalogram during mask induction of anesthesia with sevoflurane. Anesthesiology. 1999;91:1596–603.
pubmed: 10598599
doi: 10.1097/00000542-199912000-00009
Jantti V, Yli-Hankala A. Neurophysiology of anaesthesia. Clinical neurophysiology at the beginning of the 21th century. Suppl Clin Neurophysiol. 2000;53:84–8.
pubmed: 12740981
Vakkuri A, Yli-Hankala A, Sarkela M, Lindgren L, Mennander S, Korttila K, et al. Sevoflurane mask induction of anaesthesia is associated with epileptiform EEG in children. Acta Anaesthesiol Scand. 2001;45:805–11.
pubmed: 11472278
doi: 10.1034/j.1399-6576.2001.045007805.x
Schultz A, Schultz B, Grouven U, Beger F, Korsch G. Sharp transients in the EEG’s of non-epileptic adult patients receiving sevoflurane. Pharm World Sci. 2001;23:82–5.
pubmed: 11411450
doi: 10.1023/A:1011276016529
Sato K, Shamoto H, Kato M. Effect of sevoflurane on electrocorticogram in normal brain. J Neurosurg Anesthesia. 2002;14:63–5.
doi: 10.1097/00008506-200201000-00013
Olejarczyk E, Sobieszek A, Rudner R, Marciniak R, Wartak M, Stasiowski M, Jalowiecki P. Evaluation of the EEG-signal during volatile anaesthesia: methodological approach. Biocybern Biomed Eng. 2009;29(1):3–28.
Olejarczyk E, Sobieszek A, Rudner R, Marciniak R, Wartak M, Stasiowski M, Jalowiecki P. Spectral analysis of the EEG-signal registered during anaesthesia induced by propofol and maintained by fluorinated inhalation anaesthetics. Biocybern Biomed Eng. 2010;30(1):55–70.
Olejarczyk E, Jozwik A, Zmyslowski W, Sobieszek A, Marciniak R, Byrczek T, Jalowiecki P, Bem T. Automatic detection and analysis of the EEG sharp wave-slow wave patterns evoked by fluorinated inhalation anesthetics. Clin Neurophysiol. 2012;123:1512–22.
pubmed: 22300687
doi: 10.1016/j.clinph.2011.12.017
Chinzei M, Sawamura S, Hayashida M, Kitamura T, Tamai H, Hanaoka K. Change in bispectral index during epileptiform electrical activity under sevoflurane anesthesia in a patient with epilepsy. Anesth Analg. 2004;98:1734–6.
pubmed: 15155337
doi: 10.1213/01.ANE.0000117282.72866.26
Sarkela M, Ermes M, van Gils M, Yli-Hankala A, Jantti V, Vakkuri A. Quantification of epileptiform electroencephalographic activity during sevoflurane mask induction. Anesthesiology. 2007;107:928–38.
pubmed: 18043061
doi: 10.1097/01.anes.0000291444.68894.ee
Sonkajarvi E, Alahuhta S, Suominen K, Hakalax N, Vakkuri A, Lopponen H, et al. Topographic electroencephalogram in children during mask induction of anaesthesia with sevoflurane. Acta Anaesthesiol Scand. 2009;53:77–84.
pubmed: 19032567
doi: 10.1111/j.1399-6576.2008.01725.x
Jordan D, Ilg R, Schneider G, Stockmanns G, Kochs EF. EEG measures indicating anaesthesia induced changes of cortical information processing. Biomed Eng-Biomedizinische technik. 2013;58(1)
Spasic S, Kesic S, Kalauzi A, Saponjic J. Different anesthesia in rat induces distinct inter-structure brain dynamic detected by Higuchi fractal dimension. Fractals. 2011;19(1):113–23.
doi: 10.1142/S0218348X1100521X
Stojadinovic G, Martac L, Podgorac J, Spasic S, Petkovic B, Sekulic S, Kesic S. The effects of Nembutal on the intracerebellar EEG activity revealed by spectral and fractal analysis. Archiv Biol Sci. 2020;72(3):425–32.
doi: 10.2298/ABS200524036S
Murphy K, Stevenson NJ, Goulding RM, Lloyd RO, Korotchikova I, Livingstone V, Boylan GB. Automated analysis of multi-channel EEG in preterm infants. Clin Neurophysiol. 2015;126(9):1692–702.
pubmed: 25538005
doi: 10.1016/j.clinph.2014.11.024
Zappasodi F, Marzetti L, Olejarczyk E, Tecchio F, Pizzella V. Age-related changes in electroencephalographic signal complexity. PLoS One. 2015;10(11):e0141995.
pubmed: 26536036
pmcid: 4633126
doi: 10.1371/journal.pone.0141995
Khoa TQD, Ha VQ, Van Toi V. Higuchi fractal properties of onset epilepsy electroencephalogram. Comput Math Methods Med. 2012;2012:461426.
pubmed: 22461844
pmcid: 3296200
doi: 10.1155/2012/461426
Jindal K, Upadhyay R, Singh HS. Application of tunable-Q wavelet transform based nonlinear features in epileptic seizure detection. Analog Integr Circ Sig Process. 2019;100(2):437–52.
doi: 10.1007/s10470-019-01424-y
Abdulhay E, Elamaran V, Chandrasekar M, Balaji VS, Narasimhan K. Automated diagnosis of epilepsy from EEG signals using ensemble learning approach. Pattern Recogn Lett. 2020;139:174–81.
doi: 10.1016/j.patrec.2017.05.021
Brari Z, Belghith S. A novel machine learning model for the detection of epilepsy and epileptic seizures using electroencephalographic signals based on chaos and fractal theories. Math Probl Eng. 2021;2107113:1.
doi: 10.1155/2021/2107113
Torabi A, Daliri MR. Applying nonlinear measures to the brain rhythms: an effective method for epilepsy diagnosis. BMC Med Inform Decis Mak. 2021;21(1):270.
pubmed: 34560859
pmcid: 8464089
doi: 10.1186/s12911-021-01631-6
Wijayanto I, Hartanto R, Nugroho HA. Multi-distance fluctuation based dispersion fractal for epileptic seizure detection in EEG signal. Biomed Signal Process Control. 2021;69:102938.
doi: 10.1016/j.bspc.2021.102938
Choubey H, Pandey A. A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier. Sig Img Vid Process. 2021;15(3):475–83.
doi: 10.1007/s11760-020-01767-4
Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E. 2001;64:061907.
doi: 10.1103/PhysRevE.64.061907
Jouny CC, Bergey GK. Characterization of early partial seizure onset: frequency, complexity and entropy. Clin Neurophysiol. 2012;123(4):658–69.
pubmed: 21872526
doi: 10.1016/j.clinph.2011.08.003
Xu X, Song J, Hu Y, Shi W, Zhu X. An EEG analysis research for epileptics using probabilistic neural network, vol. 605–607. Advanced Designs and Researches for Manufacturing PTS 1–3; 2013. p. 2270.
Xu X, Lv B, Song J, Shi W, Hu Y, Yan S. An analysis research for digitized features of epileptic EEG using SVM, vol. 239–240. Measurement Technology and Its Application, PTS 1-2; 2013. p. 1169.
Zhang Y, Zhou W, Yuan Q, Wu Q. A low computation cost method for seizure prediction. Epilepsy Res. 2014;108(8):1357–66.
pubmed: 25062892
doi: 10.1016/j.eplepsyres.2014.06.007
Martis RJ, Tan JH, Chua CK, Loon TC, Jie SYW, Tong L. Epileptic EEG classification using nonlinear parameters on different frequency bands. J Mech Med Biol. 2015;15(3):1550040.
doi: 10.1142/S0219519415500402
Dash DP, Kolekar MH. Epileptic seizure detection based on EEG signal analysis using hierarchy based hidden Markov model. International Conference on Advances in Computing, Communications and Informatics (ICACCI); 2017. p. 1114–20.
Wijayanto I, Hartanto R, Nugroho HA. Higuchi and Katz fractal dimension for detecting interictal and ictal state in electroencephalogram signal. 11th International Conference on Information Technology and Electrical Engineering (ICITEE); 2019.
doi: 10.1109/ICITEED.2019.8929940
Sukriti Chakraborty M, Mitra D. Epilepsy seizure detection using non-linear and DWT-based features. 4th IEEE International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) – Advancing Wireless and Mobile Communications Technologies for 2020 Information Society; 2019. p. 158–63.
Lu XJ, Zhang JQ, Huang SF, Lu J, Ye MQ, Wang MS. Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics. Chaos, Solitons Fractals. 2021;151:111032.
doi: 10.1016/j.chaos.2021.111032
Zappasodi F, Olejarczyk E, Marzetti L, Assenza G, Pizzella V, Tecchio F. Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS One. 2014;9(6):e100199.
pubmed: 24967904
pmcid: 4072666
doi: 10.1371/journal.pone.0100199
Zappasodi F, Tecchio F, Marzetti L, Pizzella V, Di Lazzaro V, Assenza G. Longitudinal quantitative electroencephalographic study in mono-hemispheric stroke patients. Neural Regen Res. 2019;14(7):1237–46.
pubmed: 30804255
pmcid: 6425833
doi: 10.4103/1673-5374.251331
Kekovic G, Cukic M, Martac L, Stojadinovic G, Capo I, Lalosevic D, Sekulic S. Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium. Med Biol Eng Comput. 2010;48(7):671–9.
pubmed: 20424923
doi: 10.1007/s11517-010-0620-3
Staudinger T, Polikar R. Analysis of complexity based EEG features for the diagnosis of Alzheimer’s disease. 33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS); 2011. p. 2033–6.
Smits FM, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F. Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS One. 2016;11(2):e0149587.
pubmed: 26872349
pmcid: 4752290
doi: 10.1371/journal.pone.0149587
Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E. Higuchi fractal dimension of the electroencephalogram as a biomarker for early detection of Alzheimer’s disease. 39th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC); 2017. p. 2320–4.
Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E. Complexity measures for quantifying changes in electroencephalogram in Alzheimer’s disease. Complexity. 2018;2018:8915079.
doi: 10.1155/2018/8915079
Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25(1):85–92.
pubmed: 20811268
doi: 10.1097/WAD.0b013e3181ed1160
Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T. Temporal-specific roles of fractality in EEG signal of Alzheimer’s disease. IEEE International Joint Conference on Neural Networks (IJCNN); 2017. p. 4395–9.
Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T. Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline. Cogn Neurodyn. 2019;13(1):1–11.
pubmed: 30728867
doi: 10.1007/s11571-018-9509-x
Amezquita-Sanchez JP, Mammone N, Morabito FC, Marino S, Adeli H. A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods. 2019;322:88–95.
pubmed: 31055026
doi: 10.1016/j.jneumeth.2019.04.013
Das S, Puthankattil SD. Functional connectivity and complexity in the phenomenological model of mild cognitive-impaired Alzheimer’s disease. Front Comput Neurosci. 2022;16:877912.
pubmed: 35733555
pmcid: 9207343
doi: 10.3389/fncom.2022.877912
Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206–11.
pubmed: 22580188
doi: 10.1016/j.ijpsycho.2012.05.001
Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Prog Biomed. 2013;109(3):339–45.
doi: 10.1016/j.cmpb.2012.10.008
Bachmann M, Lass J, Suhhova A, Hinrikus H. Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram. Comput Math Methods Med. 2013;2013:251638.
pubmed: 24232245
pmcid: 3819823
doi: 10.1155/2013/251638
Bachmann M, Paeske L, Kalev K, Aarma K, Lehtmets A, Oopik P, Lass J, Hinrikus H. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput Methods Prog Biomed. 2018;155:11–7.
doi: 10.1016/j.cmpb.2017.11.023
Pold T, Paeske L, Bachmann M, Lass J, Hinrikus H. Assessment of objective symptoms of depression in occupational health examination. J Occup Environ Med. 2019;61(7):605–9.
pubmed: 31045751
doi: 10.1097/JOM.0000000000001622
Uudeberg T, Paeske L, Hinrikus H, Lass J, Bachmann M. Reliability of electroencephalogram-based individual markers case study. 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2020. p. 276–9.
Akar SA, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEG in major depression with fractal dimensions. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015a. p. 7410–3.
Akar SA, Kara S, Agambayev S, Bilgic V. Investigation of EEG signals of patients with major depression using chaotic features. Medical Technologies National Conference (TIPTEKNO); 2015b.
doi: 10.1109/TIPTEKNO.2015.7374110
Akar SA, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput Biol Med. 2015c;67:49–60.
doi: 10.1016/j.compbiomed.2015.09.019
Lebiecka K, Zuchowicz U, Wozniak-Kwasniewska A, Szekely D, Olejarczyk E, David O. Complexity analysis of EEG data in persons with depression subjected to transcranial magnetic stimulation. Front Physiol. 2018;9:1385.
pubmed: 30323771
pmcid: 6172427
doi: 10.3389/fphys.2018.01385
Khan M, Cornforth DJ, Drummond J, Hadjileontiadis L, Jelinek HF. The effectiveness of point-of-care testing with intervention in psychopathology: a pilot study. 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI); 2021.
Cukic M, Stokic M, Radenkovic S, Ljubisavljevic M, Simic S, Savic D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. Int J Methods Psychiatr Res. 2020a;29(2):e1816.
pubmed: 31820528
doi: 10.1002/mpr.1816
Cukic M, Stokic M, Simic S, Pokrajac D. The successful discrimination of depression from EEG could be attributed to proper feature extraction and not to a particular classification method. Cogn Neurodyn. 2020b;14(4):443–55.
pubmed: 32655709
pmcid: 7334335
doi: 10.1007/s11571-020-09581-x
Wu CT, Huang HC, Huang S, Chen IM, Liao SC, Chen CK, Lin C, Lee SH, Chen MH, Tsai CF, Weng CH, Ko LW, Jung TP, Liu YH. Resting-state EEG signal for major depressive disorder detection: a systematic validation on a large and diverse dataset. Biosensors–Basel. 2021;11(12):499.
pubmed: 34940256
pmcid: 8699348
doi: 10.3390/bios11120499
Avots E, Jermakovs K, Bachmann M, Paeske L, Ozcinar C, Anbarjafari G. Ensemble approach for detection of depression using EEG features. Entropy. 2022;24(2):211.
pubmed: 35205506
pmcid: 8871180
doi: 10.3390/e24020211
Nouranian S, Setarehdan SK, Nasrabadi AM, Ghaffarpour M, Ghabaee M (2003) 7th world multiconference on systemics, cybernetics and informatics (SCI 2003), 4: Image, Acoustic, Speech and Signal Processing.
Sabeti M, Sadreddini MH, Nezhad JT. EEG signal classification using an association rule-based classifier. IEEE International Conference on Signal Processing and Communications; 2007a. p. 620.
Sabeti M, Boostani R, Katebi SD, Price GW. Selection of relevant features for EEG signal classification of schizophrenic patients. Biomed Signal Process Control. 2007b;2(2):122–34.
doi: 10.1016/j.bspc.2007.03.003
Boostani R, Sadatnezhad K, Sabeti M. An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Syst Appl. 2009;36(3):6492–9.
doi: 10.1016/j.eswa.2008.07.037
Sabeti M, Katebi S, Boostani R. Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med. 2009;47:263–74.
pubmed: 19403281
doi: 10.1016/j.artmed.2009.03.003
Sabeti M, Katebi SD, Boostani R, Price GW. A new approach for EEG signal classification of schizophrenic and control participants. Expert Syst Appl. 2011;38(3):2063–71.
doi: 10.1016/j.eswa.2010.07.145
Raghavendra BS, Dutt DN, Halahalli HN, John JP. Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiol Meas. 2009;30(8):795–808.
pubmed: 19550026
doi: 10.1088/0967-3334/30/8/005
Thilakvathi B, Devi SS, Bhanu K, Malaippan M. EEG signal complexity analysis for schizophrenia during rest and mental activity. Biomedical Research – India. 2017;28(1):1–9.
Alimardani F, Boostani R. DB-FFR: a modified feature selection algorithm to improve discrimination rate between bipolar mood disorder (BMD) and schizophrenic patients. Iran J Sci Technol Trans A Sci Electr Eng. 2018;42(3):251–60.
doi: 10.1007/s40998-018-0060-x
Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: John Wiley and Sons; 2001.
Davies D, Bouldin D. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 1979;1(2):224–7.
pubmed: 21868852
doi: 10.1109/TPAMI.1979.4766909
Sharma A, Rai JK, Tewari RP. Schizophrenia detection using biomarkers from electroencephalogram signals. IETE J Res. 2020;68:3056.
doi: 10.1080/03772063.2020.1753587
Goshvarpour A, Goshvarpour A. Schizophrenia diagnosis using innovative EEG feature-level fusion schemes. Phys Eng Sci Med. 2020;43(1):227–38.
doi: 10.1007/s13246-019-00839-1
Olejarczyk E, Jernajczyk W. Graph-based analysis of brain connectivity in schizophrenia. PLoS One. 2017;12(11):e0188629. EEG database available in the repository: https://repod.icm.edu.pl/dataverse/repod?q=olejarczyk
pubmed: 29190759
pmcid: 5708839
doi: 10.1371/journal.pone.0188629
Lipping T, Olejarczyk E, Parts M. Analysis of photo-stimulation and microwave stimulation effects on EEG signal using Higuchi’s fractal dimension method. Proc SPIE. 2003;5505:174–8.
Bachmann M, Lass J, Suhhova A, Hinrikus H. Spectral asymmetry index and Higuchi’s fractal dimension for detecting microwave radiation effect on electroencephalographic signal. Proc Eston Acad Sci. 2014;63(3):322–7.
Spasic S, Nikolic LJ, Mutavdzic D, Saponjic J. Independent complexity patterns in single neuron activity induced by static magnetic field. Comput Methods Prog Biomed. 2011;104(2):212–8.
doi: 10.1016/j.cmpb.2011.07.006
Cottone C, Porcaro C, Cancelli A, Olejarczyk E, Salustri C, Tecchio F. Neuronal electrical ongoing activity as a signature of cortical areas. Brain Struct Funct. 2017;222(5):2115–26.
pubmed: 27803994
doi: 10.1007/s00429-016-1328-4
Tripanpitak K, Viriyavit W, Huang SY, Yu W. Classification of pain event related potential for evaluation of pain perception induced by electrical stimulation. Sensors. 2020;20(5):1491.
pubmed: 32182766
pmcid: 7085779
doi: 10.3390/s20051491
Porcaro C, Cottone C, Cancelli A, Rossini PM, Zito G, Tecchio F. Cortical neurodynamics changes mediate the efficacy of a personalized neuromodulation against multiple sclerosis fatigue. Sci Rep. 2019;9(1):18213.
pubmed: 31796805
pmcid: 6890667
doi: 10.1038/s41598-019-54595-z
Gomez C, Mediavilla A, Hornero R, Abasolo D, Fernandez A. Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med Eng Phys. 2009;31(3):306–13.
pubmed: 18676171
doi: 10.1016/j.medengphy.2008.06.010
Olejarczyk E. Application of fractal dimension method of functional MRI time-series to limbic dysregulation in anxiety study. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007. p. 3408–10.
Rubin D, Fekete T, Mujica-Parodi LR. Optimizing complexity measures for fMRI data: algorithm, artifact, and sensitivity. PLoS One. 2013;8(5):e63448.
pubmed: 23700424
pmcid: 3660309
doi: 10.1371/journal.pone.0063448
Porcaro C, Di Renzo A, Tinelli E, Di Lorenzo G, Parisi V, Caramia F, Fiorelli M, Di Piero V, Pierelli F, Coppola G. Haemodynamic activity characterization of resting state networks by fractal analysis and thalamocortical morphofunctional integrity in chronic migraine. J Headache Pain. 2020;21(1):112.
pubmed: 32928129
pmcid: 7490862
doi: 10.1186/s10194-020-01181-8
Varley TF, Craig M, Adapa R, Finoia P, Williams G, Allanson J, Pickard J, Menon DK, Stamatakis EA. Fractal dimension of cortical functional connectivity networks and severity of disorders of consciousness. PLoS One. 2020;15(2):e0223812.
pubmed: 32053587
pmcid: 7017993
doi: 10.1371/journal.pone.0223812
Portnova GV, Tetereva A, Balaev V, Atanov M, Skiteva L, Ushakov V, Ivanitsky A, Martynova O. Correlation of BOLD signal with linear and nonlinear patterns of EEG in resting state EEG-informed fMRI. Front Hum Neurosci. 2018;11:654.
pubmed: 29375349
pmcid: 5767270
doi: 10.3389/fnhum.2017.00654