Fractal Neurodynamics.
Higuchi fractal dimension
Local signature
Neurodynamics
Power law
Power spectral density
Journal
Advances in neurobiology
ISSN: 2190-5215
Titre abrégé: Adv Neurobiol
Pays: United States
ID NLM: 101571545
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
ppublish
Résumé
The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.
Identifiants
pubmed: 38468057
doi: 10.1007/978-3-031-47606-8_33
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
659-675Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Acharya U, Rajendra OF, Kannathal N, Chua T, Laxminarayan S. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Prog Biomed. 2005;80(1):37–45. https://doi.org/10.1016/j.cmpb.2005.06.011 .
doi: 10.1016/j.cmpb.2005.06.011
Aguirre GK, Zarahn E, D’Esposito M. Empirical analyses of BOLD FMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. NeuroImage. 1997;5(3):199–212. https://doi.org/10.1006/nimg.1997.0264 .
doi: 10.1006/nimg.1997.0264
pubmed: 9345549
Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206–11. https://doi.org/10.1016/j.ijpsycho.2012.05.001 .
doi: 10.1016/j.ijpsycho.2012.05.001
pubmed: 22580188
Allegrini P, Menicucci D, Bedini R, Fronzoni L, Gemignani A, Grigolini P, West BJ, Paradisi P. Spontaneous brain activity as a source of ideal 1/f noise. Phys Rev E Stat Nonlinear Soft Matter Phys. 2009;80(6):1–13. https://doi.org/10.1103/PhysRevE.80.061914 .
doi: 10.1103/PhysRevE.80.061914
Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E. Higuchi fractal dimension of the electroencephalogram as a biomarker for early detection of Alzheimer’s disease. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. IEEE; 2017. p. 2320–4. https://doi.org/10.1109/EMBC.2017.8037320 .
doi: 10.1109/EMBC.2017.8037320
Andrillon T, Poulsen AT, Hansen LK, Ger DLÉ, Kouider S. Neural markers of responsiveness to the environment in human sleep. J Neurosci. 2016;36(24):6583–96. https://doi.org/10.1523/JNEUROSCI.0902-16.2016 .
doi: 10.1523/JNEUROSCI.0902-16.2016
pubmed: 27307244
pmcid: 6601917
Armonaite K, Bertoli M, Paulon L, Gianni E, Balsi M, Conti L, Tecchio F. Neuronal electrical ongoing activity as cortical areas signature: an insight from MNI intracerebral recording atlas. Cereb Cortex. 2021; https://doi.org/10.1093/CERCOR/BHAB389 .
Armonaite K, Nobili L, Paulon L, Balsi M, Conti L, Tecchio F. Local Neurodynamics as a signature of cortical areas: new insights from sleep. Cereb Cortex. 2022; https://doi.org/10.1093/CERCOR/BHAC274 .
Brodmann K. Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues. Leipzig: J.A. Barth; 1909.
Broido AD, Clauset A. Scale-free networks are rare. Nat Commun. 2019; https://doi.org/10.1038/s41467-019-08746-5 .
Burioka N, Miyata M, Cornélissen G, Halberg F, Takeshima T, Kaplan DT, Suyama H, et al. Approximate entropy in the electroencephalogram during wake and sleep. Clin EEG Neurosci. 2005;36(1):21–4. https://doi.org/10.1177/155005940503600106 .
doi: 10.1177/155005940503600106
pubmed: 15683194
pmcid: 2563806
Burlaga LF, Klein LW. Fractal structure of the interplanetary magnetic field. J Geophys Res. 1986;91(A1):347. https://doi.org/10.1029/ja091ia01p00347 .
doi: 10.1029/ja091ia01p00347
Buzsáki G. Rhythms of the brain. In: Rhythms of the brain. Oxford University Press; 2009. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001 .
doi: 10.1093/acprof:oso/9780195301069.001.0001
Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012;14(4):345–67. https://doi.org/10.31887/dcns.2012.14.4/gbuzsaki .
doi: 10.31887/dcns.2012.14.4/gbuzsaki
pubmed: 23393413
pmcid: 3553572
Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013;5(198) https://doi.org/10.1126/scitranslmed.3006294 .
Chen T, Bobbert PA, Wiel WG. 1/f noise and machine intelligence in a nonlinear dopant atom network. Small Sci. 2021;1(3):2000014. https://doi.org/10.1002/smsc.202000014 .
doi: 10.1002/smsc.202000014
Cottone C, Porcaro C, Cancelli A, Olejarczyk E, Salustri C, Tecchio F. Neuronal electrical ongoing activity as a signature of cortical areas. Brain Struct Funct. 2017;222(5):2115–26. https://doi.org/10.1007/s00429-016-1328-4 .
doi: 10.1007/s00429-016-1328-4
pubmed: 27803994
Croce P, Quercia A, Costa S, Zappasodi F. Circadian rhythms in fractal features of EEG signals. Front Physiol. 2018;9(Nov):1567. https://doi.org/10.3389/fphys.2018.01567 .
doi: 10.3389/fphys.2018.01567
pubmed: 30483146
pmcid: 6240683
Deng F, Jiang X, Zhu D, Zhang T, Li K, Guo L, Liu T. A functional model of cortical gyri and sulci. Brain Struct Funct. 2014;219(4):1473–91. https://doi.org/10.1007/s00429-013-0581-z .
doi: 10.1007/s00429-013-0581-z
pubmed: 23689502
Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, Noto T, et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci. 2020;23(12):1655–65. https://doi.org/10.1038/s41593-020-00744-x .
doi: 10.1038/s41593-020-00744-x
pubmed: 33230329
pmcid: 8106550
Eke A, Herman P, Kocsis L, Kozak LR. Fractal characterization of complexity in temporal physiological signals. Physiol Meas. 2002;23(1) https://doi.org/10.1088/0967-3334/23/1/201 .
Evertz R, Hicks DG, Liley DTJ. Alpha blocking and 1/Fβ spectral scaling in resting EEG can be accounted for by a sum of damped alpha band oscillatory processes. PLoS Comput Biol. 2022; https://doi.org/10.1371/journal.pcbi.1010012 .
Ferenets R, Lipping T, Anier A, Jäntti V, Melto S, Hovilehto S. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans Biomed Eng. 2006;53(6):1067–77. https://doi.org/10.1109/TBME.2006.873543 .
doi: 10.1109/TBME.2006.873543
pubmed: 16761834
Flores-Marquez G-C, Cifuentes-Nava. Fractal dimension analysis of the magnetic time series associated with the volcanic activity of Popocat Epetl. Nonlinear Process Geophys. 2012;19:693–701. https://doi.org/10.5194/npg-19-693-2012 .
doi: 10.5194/npg-19-693-2012
Frauscher B, Von Ellenrieder N, Zelmann R, Doležalová I, Minotti L, Olivier A, Hall J, et al. Atlas of the Normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain. 2018;141(4):1130–44. https://doi.org/10.1093/brain/awy035 .
doi: 10.1093/brain/awy035
pubmed: 29506200
Freeman WJ, Zhai J. Simulated power spectral density (PSD) of background Electrocorticogram (ECoG). Cogn Neurodyn. 2009;3(1):97–103. https://doi.org/10.1007/s11571-008-9064-y .
doi: 10.1007/s11571-008-9064-y
pubmed: 19003455
Gálvez-Coyt G, Muñoz-Diosdado A, Peralta JA, et al. Parameters of Higuchi’s method to characterize primary waves in some seismograms from the Mexican subduction zone. Acta Geophys. 2012;60:910–927. https://doi.org/10.2478/s11600-012-0033-9
Garrett DD, Samanez-Larkin GR, MacDonald SWS, Lindenberger U, McIntosh AR, Grady CL. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev. 2013;37(4):610–24. https://doi.org/10.1016/j.neubiorev.2013.02.015 .
doi: 10.1016/j.neubiorev.2013.02.015
pubmed: 23458776
pmcid: 3732213
Gomolka RS, Kampusch S, Kaniusas E, Thürk F, Széles JC, Klonowski W. Higuchi fractal dimension of heart rate variability during percutaneous auricular vagus nerve stimulation in healthy and diabetic subjects. Front Physiol. 2018;9(August):1–8. https://doi.org/10.3389/fphys.2018.01162 .
doi: 10.3389/fphys.2018.01162
Hausdorff JM, Peng CK. Multiscaled randomness: a possible source of 1/f noise in biology. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(2):2154–7. https://doi.org/10.1103/PhysRevE.54.2154 .
doi: 10.1103/PhysRevE.54.2154
pubmed: 9965304
He BJ. Scale-free brain activity: past, present, and future. In: Trends in cognitive sciences. Elsevier; 2014. https://doi.org/10.1016/j.tics.2014.04.003 .
doi: 10.1016/j.tics.2014.04.003
He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66(3):353–69. https://doi.org/10.1016/j.neuron.2010.04.020 .
doi: 10.1016/j.neuron.2010.04.020
pubmed: 20471349
pmcid: 2878725
Hernán DM, Córdova FM, Cañete L, Palominos F, Cifuentes F, Sánchez C, Herrera M. Order and chaos in the brain: fractal time series analysis of the EEG activity during a cognitive problem solving task. Procedia Comput Sci. 2015;55(Itqm):1410–9. https://doi.org/10.1016/j.procs.2015.07.135 .
doi: 10.1016/j.procs.2015.07.135
Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena. 1988;31(2):277–83. https://doi.org/10.1016/0167-2789(88)90081-4 .
doi: 10.1016/0167-2789(88)90081-4
Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS. Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process. 2005;85(11):2190–212. https://doi.org/10.1016/j.sigpro.2005.07.010 .
doi: 10.1016/j.sigpro.2005.07.010
Keitel A, Gross J. Individual human brain areas can be identified from their characteristic spectral activation fingerprints. PLoS Biol. 2016; https://doi.org/10.1371/journal.pbio.1002498 .
Kesić S, Spasić SZ. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: a review. Comput Methods Prog Biomed. 2016;133:55–70. https://doi.org/10.1016/j.cmpb.2016.05.014 .
doi: 10.1016/j.cmpb.2016.05.014
Klonowski W. Chaotic dynamics applied to signal complexity in phase space and in time domain. Chaos Solitons Fractals. 2002;14(9):1379–87. https://doi.org/10.1016/S0960-0779(02)00056-5 .
doi: 10.1016/S0960-0779(02)00056-5
Kobayashi T, Misaki K, Nakagawa H, Madokoro S, Ota T, Ihara H, Tsuda K, Umezawa Y, Murayama J, Isaki K. Correlation dimension of the human sleep electroencephalogram. Psychiatry Clin Neurosci. 2000;54(1):11–6. https://doi.org/10.1046/j.1440-1819.2000.00629.x .
doi: 10.1046/j.1440-1819.2000.00629.x
pubmed: 15558873
La Torre, et al. Fractal dimension algorithms and their application to time series associated with natural phenomena. J Phys Conf Ser. 2013; https://doi.org/10.1088/1742-6596/475/1/012002 .
Liehr L, Massopust P. On the mathematical validity of the Higuchi method. Physica D: Nonlinear Phenomena. 2020;402:132265. https://doi.org/10.1016/j.physd.2019.132265 .
doi: 10.1016/j.physd.2019.132265
Muthukumaraswamy SD, Liley TJ. 1/F electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. NeuroImage. 2018;179(November 2017):582–95. https://doi.org/10.1016/j.neuroimage.2018.06.068 .
doi: 10.1016/j.neuroimage.2018.06.068
pubmed: 29959047
Nicolaou ZG, Sebek M, Kiss IZ, Motter AE. Coherent dynamics enhanced by uncorrelated noise. Phys Rev Lett. 2020;125(9):94101. https://doi.org/10.1103/PhysRevLett.125.094101 .
doi: 10.1103/PhysRevLett.125.094101
Olejarczyk E, Gotman J, Frauscher B. Region-specific complexity of the intracranial EEG in the sleeping human brain. Sci Rep. 2022;12(1) https://doi.org/10.1038/S41598-021-04213-8 .
Peterson, Erik J, Burke Q Rosen, Alana M Campbell, Aysenil Belger, Bradley Voytek. 2018. “1/F neural noise is a better predictor of schizophrenia than neural oscillations.” BioRxiv, 113449. https://www.biorxiv.org/content/10.1101/113449v4%0A ; https://www.biorxiv.org/content/10.1101/113449v4.abstract
Raghavendra BS, Narayana Dutt D. Signal characterization using fractal dimension. Fractals. 2010;18(3):287–92. https://doi.org/10.1142/S0218348X10004968 .
doi: 10.1142/S0218348X10004968
Raghavendra BS, Narayana Dutt D, Halahalli HN, John JP. Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiol Meas. 2009;30(8):795–808. https://doi.org/10.1088/0967-3334/30/8/005 .
doi: 10.1088/0967-3334/30/8/005
pubmed: 19550026
Rodriguez E, Echeverría JC, Alvarez-Ramirez J. Detrending fluctuation analysis based on high-pass filtering. Physica A: Stat Mech Appl. 2007;375(2):699–708. https://doi.org/10.1016/j.physa.2006.10.038 .
doi: 10.1016/j.physa.2006.10.038
Ruiz de Miras J, Soler F, Iglesias-Parro S, Ibáñez-Molina AJ, Casali AG, Laureys S, Massimini M, Esteban FJ, Navas J, Langa JA. Fractal dimension analysis of states of consciousness and unconsciousness using transcranial magnetic stimulation. Comput Methods Prog Biomed. 2019;175:129–37. https://doi.org/10.1016/j.cmpb.2019.04.017 .
doi: 10.1016/j.cmpb.2019.04.017
Schartner MM, Pigorini A, Gibbs SA, Arnulfo G, Sarasso S, Barnett L, Nobili L, Massimini M, Seth AK, Barrett AB. Global and local complexity of intracranial EEG decreases during NREM sleep. Neurosci Conscious. 2020;2017(1):1–12. https://doi.org/10.1093/nc/niw022 .
doi: 10.1093/nc/niw022
Smits FM, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F. Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS One. 2016;11(2):e0149587. https://doi.org/10.1371/journal.pone.0149587 .
doi: 10.1371/journal.pone.0149587
pubmed: 26872349
pmcid: 4752290
von Ellenrieder N, Gotman J, Zelmann R, Rogers C, Nguyen DK, Kahane P, Dubeau F, Frauscher B. How the human brain sleeps: direct cortical recordings of Normal brain activity. Ann Neurol. 2020;87(2):289–301. https://doi.org/10.1002/ana.25651 .
doi: 10.1002/ana.25651
Wainio-Theberge S, Wolff A, Gomez-Pilar J, Zhang J, Northoff G. Variability and task-responsiveness of electrophysiological dynamics: scale-free stability and oscillatory flexibility. NeuroImage. 2022;256(April):119245. https://doi.org/10.1016/j.neuroimage.2022.119245 .
doi: 10.1016/j.neuroimage.2022.119245
pubmed: 35477021
Wang HE, Bénar CG, Quilichini PP, Friston KJ, Jirsa VK, Bernard C. A systematic framework for functional connectivity measures. Front Neurosci. 2014;8(DEC):405. https://doi.org/10.3389/FNINS.2014.00405/ABSTRACT .
doi: 10.3389/FNINS.2014.00405/ABSTRACT
pubmed: 25538556
pmcid: 4260483
Wanliss JA, Wanliss GE. Efficient calculation of fractal properties via the Higuchi method. Nonlinear Dyn. 2022;109:2893–2904. https://doi.org/10.1007/s11071-022-07353-2
Yamamoto Y, Hughson RL. Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol. 1991;71(3):1143–50. https://doi.org/10.1152/jappl.1991.71.3.1143 .
doi: 10.1152/jappl.1991.71.3.1143
pubmed: 1757311
Yamamoto Y, Hughson RL. Extracting fractal components from time series. Physica D: Nonlinear Phenomena. 1993;68(2):250–64. https://doi.org/10.1016/0167-2789(93)90083-D .
doi: 10.1016/0167-2789(93)90083-D
Zhang L, Small M, Judd K. Exactly scale-free scale-free networks. Physica A. 2013; https://doi.org/10.1016/j.physa.2015.03.074 .
Zhou C, Kurths J. Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys Rev Lett. 2002;88(23):4. https://doi.org/10.1103/PhysRevLett.88.230602 .
doi: 10.1103/PhysRevLett.88.230602
Zimmern V. Why brain criticality is clinically relevant: a scoping review. Front Neural Circuits. 2020;14(August):1–34. https://doi.org/10.3389/fncir.2020.00054 .
doi: 10.3389/fncir.2020.00054