Distinct neural signatures of pulvinar in C9orf72 amyotrophic lateral sclerosis mutation carriers and noncarriers.
C9orf72 mutation
MRI
amyotrophic lateral sclerosis
fMRI
pulvinar
Journal
European journal of neurology
ISSN: 1468-1331
Titre abrégé: Eur J Neurol
Pays: England
ID NLM: 9506311
Informations de publication
Date de publication:
12 Mar 2024
12 Mar 2024
Historique:
revised:
30
01
2024
received:
17
08
2023
accepted:
15
02
2024
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
aheadofprint
Résumé
Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region. We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation. Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds. Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.
Sections du résumé
BACKGROUND AND PURPOSE
OBJECTIVE
Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region.
METHODS
METHODS
We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation.
RESULTS
RESULTS
Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds.
CONCLUSIONS
CONCLUSIONS
Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e16266Subventions
Organisme : Ministero dell'Università e della Ricerca
ID : 2017SNW5MB
Organisme : European Commission's Health Seventh Framework Programme
ID : FP7/2007-2013
Organisme : European Commission's Health Seventh Framework Programme
ID : 259867
Organisme : Ministero della Salute
ID : GR-2019-12371291
Organisme : Ministero della Salute
ID : RF-2016-02362405
Organisme : Ministero della Salute
ID : RRC
Informations de copyright
© 2024 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.
Références
Chiò A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol. 2014;13:1228-1240.
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245-256.
Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11:323-330.
Grassano M, Calvo A, Moglia C, et al. Systematic evaluation of genetic mutations in ALS: a population-based study. J Neurol Neurosurg Psychiatry. 2022;93:1190-1193.
Marogianni C, Rikos D, Provatas A, et al. The role of C9orf72 in neurodegenerative disorders: a systematic review, an updated meta-analysis, and the creation of an online database. Neurobiol Aging. 2019;84(238):e25-238.e34.
Trojsi F, Siciliano M, Femiano C, et al. Comparative analysis of C9Orf72 and sporadic disease in a large multicenter ALS population: the effect of male sex on survival of C9Orf72 positive patients. Front Neurosci. 2019;13:1-10.
Irwin DJ, McMillan CT, Brettschneider J, et al. Cognitive decline and reduced survival in C9orf72 expansion frontotemporal degeneration and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:163-169.
Byrne S, Elamin M, Bede P, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11:232-240.
Millecamps S, Boillée S, Le Ber I, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet. 2012;49:258-263.
Chipika RH, Finegan E, Li Hi Shing S, et al. “Switchboard” malfunction in motor neuron diseases: selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NeuroImage Clin. 2020;27:102300.
Querin G, Biferi MG, Pradat PF. Biomarkers for C9orf7-ALS in symptomatic and pre-symptomatic patients: state-of-the-art in the new era of clinical trials. J Neuromuscul Dis. 2022;9:25-37.
Spinelli EG, Ghirelli A, Basaia S, et al. Structural MRI signatures in genetic presentations of the frontotemporal dementia/motor neuron disease Spectrum. Neurology. 2021;97:E1594-E1607.
Bocchetta M, Todd EG, Peakman G, et al. Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage Clin. 2021;30:8-11.
Bocchetta M, Iglesias JE, Neason M, Cash DM, Warren JD, Rohrer JD. Thalamic nuclei in frontotemporal dementia: mediodorsal nucleus involvement is universal but pulvinar atrophy is unique to C9orf72. Hum Brain Mapp. 2020;41:1006-1016.
Bocchetta M, Todd EG, Tse NY, et al. Thalamic and cerebellar regional involvement across the ALS-FTD Spectrum and the effect of C9orf72. Brain Sci. 2022;12:1-16.
McKenna MC, Li Hi Shing S, Murad A, et al. Focal thalamus pathology in frontotemporal dementia: phenotype-associated thalamic profiles. J Neurol Sci. 2022;436:120221.
Lee SE, Khazenzon AM, Trujillo AJ, et al. Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain. 2014;137:3047-3060.
Saalmann YB, Pinsk MA, Wang L, et al. The pulvinar regulates information transmission between cortical areas based on attention demands. Science (80-). 2012;337:753-756.
Barron DS, Eickhoff SB, Clos M, Fox PT. Human pulvinar functional organization and connectivity. Hum Brain Mapp. 2015;36:2417-2431.
Fiebelkorn IC, Kastner S. The puzzling pulvinar. Neuron. 2019;101:201-203.
Guedj C, Vuilleumier P. Functional connectivity fingerprints of the human pulvinar: decoding its role in cognition. Neuroimage. 2020;221:117162.
Jaramillo J, Mejias JF, Wang XJ. Engagement of Pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron. 2019;101:321-336.e9.
Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2000;1:293-299.
Nigri A, Umberto M, Stanziano M, et al. C9orf72 ALS mutation carriers show extensive cortical and subcortical damage compared to matched wild-type ALS patients. NeuroImage Clin. 2023;38:103400. doi:10.1016/j.nicl.2023.103400
Stanziano M, Fedeli D, Manera U, et al. Resting-state fMRI functional connectome of C9orf72 mutation status. Ann Clin Transl Neurol. 2024;1-12. doi:10.1002/acn3.51989
Balendra R, Jones A, Jivraj N, et al. Estimating clinical stage of amyotrophic lateral sclerosis from the ALS functional rating scale. Amyotroph Lateral Scler Front Degener. 2014;15:279-284.
Fischl B. FreeSurfer. Neuroimage. 2012;62:774-781.
Iglesias JE, Insausti R, Lerma-Usabiaga G, et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage. 2018;183:314-326.
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125-141.
Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839-851.
Chai XJ, Castañán AN, Öngür D, et al. Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012;59:1420-1428.
Nieto-Castanon A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press; 2020.
Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 2020;17:261-272.
Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference. 2010, pp. 10-25080.
Thiele C, Thiele MC. Package ‘cutpointr’.
Schönecker S, Neuhofer C, Otto M, et al. Atrophy in the thalamus but not cerebellum is specific for C9orf72 FTD and ALS patients - an atlas-based volumetric MRI study. Front Aging Neurosci. 2018;10:1-11.
Agosta F, Ferraro PM, Riva N, et al. Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiol Aging. 2017;57:206-219.
Byne W, Hazlett EA, Buchsbaum MS, Kemether E. The thalamus and schizophrenia: current status of research. Acta Neuropathol. 2009;117:347-368.
Kemether EM, Buchsbaum MS, Byne W, et al. Magnetic resonance imaging of mediodorsal, pulvinar, and centromedian nuclei of the thalamus in patients with schizophrenia. Arch Gen Psychiatry. 2003;60:983-991.
Loewe K, Machts J, Kaufmann J, et al. Widespread temporo-occipital lobe dysfunction in amyotrophic lateral sclerosis. Sci Rep. 2017;7:1-9.
Douand G, Filippini N, Knight S, et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain. 2011;134:3470-3479.
Zhang J, Ji B, Hu J, et al. Aberrant interhemispheric homotopic functional and structural connectivity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2017;88:374-380.
Zhou F, Gong H, Li F, et al. Altered motor network functional connectivity in amyotrophic lateral sclerosis : a resting-state functional magnetic resonance imaging study. Neuroreport. 2013;24:657-662.
Menke RAL, Proudfoot M, Talbot K, et al. The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. NeuroImage Clin. 2018;17:953-961.
Crockford C, Newton J, Lonergan K, et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology. 2018;91:E1370-E1380.
Bede P, Siah WF, McKenna MC, et al. Consideration of C9orf72 - associated ALS-FTD as a neurodevel opmental disorder: insights from neuroimaging. J Neurol Neurosurg Psychiatry. 2020;91:1138.
Shoukry RS, Waugh R, Bartlett D, Raitcheva D, Floeter MK. Longitudinal changes in resting state networks in early presymptomatic carriers of C9orf72 expansions. NeuroImage Clin. 2020;28:102354.
Rittman T, Borchert R, Jones S, et al. Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiol Aging. 2019;77:169-177.
Tsvetanov KA, Gazzina S, Jones PS, et al. Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimers Dement. 2021;17:500-514.
Agosta F, Spinelli EG, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother. 2018;18:395-406.