Specific cellular microenvironments for spatiotemporal regulation of StAR and steroid synthesis.
Journal
The Journal of endocrinology
ISSN: 1479-6805
Titre abrégé: J Endocrinol
Pays: England
ID NLM: 0375363
Informations de publication
Date de publication:
01 Mar 2024
01 Mar 2024
Historique:
received:
12
12
2023
accepted:
12
03
2024
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
aheadofprint
Résumé
For many years, research in the field of steroid synthesis has aimed to understand the regulation of the rate-limiting step of steroid synthesis, i.e., the transport of cholesterol from the outer to the inner mitochondrial membrane, and identify the protein involved in the conversion of cholesterol into pregnenolone. The extraordinary work by B Clark, J Wells, S R King, and D M Stocco eventually identified this protein and named it steroidogenic acute regulatory protein (StAR). The group's finding was also one of the milestones in understanding the mechanism of non-vesicular lipid transport between organelles. A notable feature of StAR is its high degree of phosphorylation. In fact, StAR phosphorylation in the acute phase is required for full steroid biosynthesis. As a contribution to this subject, our work has led to the characterization of StAR as a substrate of kinases and phosphatases and as an integral part of a mitochondria-associated multi-protein complex, essential for StAR function and cholesterol binding and mitochondrial transport to yield maximum steroid production. Results allow us to postulate the existence of a specific cellular microenvironment where StAR protein synthesis and activation, along with steroid synthesis and secretion, are performed in a compartmentalized manner, at the site of hormone receptor stimulation, and involving the compartmentalized formation of the steroid molecule synthesizing complex.
Identifiants
pubmed: 38470178
doi: 10.1530/JOE-23-0391
pii: JOE-23-0391
doi:
pii:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM