Stabilization of N


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 Mar 2024
Historique:
received: 23 11 2023
accepted: 14 02 2024
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: epublish

Résumé

Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc

Identifiants

pubmed: 38472167
doi: 10.1038/s41467-024-46313-9
pii: 10.1038/s41467-024-46313-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2244

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DU 954-11/1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DU 393-13/1

Informations de copyright

© 2024. The Author(s).

Références

Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).
pubmed: 15235595 doi: 10.1038/nmat1146
Laniel, D. et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett. 124, 216001 (2020).
pubmed: 32530671 doi: 10.1103/PhysRevLett.124.216001
Laniel, D., Geneste, G., Weck, G., Mezouar, M. & Loubeyre, P. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett. 122, 66001 (2019).
doi: 10.1103/PhysRevLett.122.066001
Laniel, D., Weck, G., Gaiffe, G., Garbarino, G. & Loubeyre, P. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett. 9, 1600–1604 (2018).
pubmed: 29533665 doi: 10.1021/acs.jpclett.8b00540
Bykov, M. et al. Dinitrogen as a universal electron acceptor in solid-state chemistry: an example of uncommon metallic compounds Na
pubmed: 33000943 doi: 10.1021/acs.inorgchem.0c01863
Bhadram, V. S., Kim, D. Y. & Strobel, T. A. High-pressure synthesis and characterization of incompressible titanium pernitride. Chem. Mater. 28, 1616–1620 (2016).
doi: 10.1021/acs.chemmater.6b00042
Bykov, M. et al. High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re
pubmed: 31278267 pmcid: 6611777 doi: 10.1038/s41467-019-10995-3
Young, A. F. et al. Synthesis of novel transition metal nitrides IrN
pubmed: 16712167 doi: 10.1103/PhysRevLett.96.155501
Crowhurst, J. C. et al. Synthesis and characterization of the nitrides of platinum and iridium. Science. 311, 1275–1278 (2006).
pubmed: 16513980 doi: 10.1126/science.1121813
Laniel, D. et al. High-pressure Na
doi: 10.1103/PhysRevMaterials.6.023402
Aslandukov, A. et al. High-pressure yttrium nitride, Y
doi: 10.1021/acs.jpcc.1c06210
Schneider, S. B., Frankovsky, R. & Schnick, W. Synthesis of alkaline earth diazenides M
pubmed: 22235865 doi: 10.1021/ic2023677
Niwa, K. et al. High-pressure synthesis and phase stability of nickel pernitride. Eur. J. Inorg. Chem. 2019, 3753–3757 (2019).
doi: 10.1002/ejic.201900489
Chen, W., Tse, J. S. & Jiang, J. Z. Stability, elastic and electronic properties of palladium nitride. J. Phys. Condens. Matter 22, 015404 (2010).
pubmed: 21386226 doi: 10.1088/0953-8984/22/1/015404
Niwa, K., Yamamoto, T., Sasaki, T. & Hasegawa, M. High-pressure synthesis, crystal growth, and compression behavior of hexagonal CrN
doi: 10.1103/PhysRevMaterials.3.053601
Niwa, K. et al. Highly coordinated iron and cobalt nitrides synthesized at high pressures and high temperatures. Inorg. Chem. 56, 6410–6418 (2017).
pubmed: 28509545 doi: 10.1021/acs.inorgchem.7b00516
Wessel, M. & Dronskowski, R. Nature of N-N bonding within high-pressure noble-metal pernitrides and the prediction of lanthanum pernitride. J. Am. Chem. Soc. 132, 2421–2429 (2010).
pubmed: 20121239 doi: 10.1021/ja910570t
Niwa, K. et al. Discovery of the last remaining binary platinum-group pernitride RuN
pubmed: 25205266 doi: 10.1002/chem.201404165
Niwa, K. et al. High pressure synthesis of marcasite-type rhodium pernitride. Inorg. Chem. 53, 697–699 (2014).
pubmed: 24393052 doi: 10.1021/ic402885k
Laniel, D. et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun. 10, 4515 (2019).
pubmed: 31586062 pmcid: 6778147 doi: 10.1038/s41467-019-12530-w
Laniel, D., Weck, G. & Loubeyre, P. Direct reaction of nitrogen and lithium up to 75 GPa: synthesis of the Li
pubmed: 30137975 doi: 10.1021/acs.inorgchem.8b01325
Steele, B. A. et al. High-pressure synthesis of a pentazolate salt. Chem. Mater. 29, 735–741 (2017).
doi: 10.1021/acs.chemmater.6b04538
Bykov, M. et al. Stabilization of pentazolate anions in the high-pressure compounds Na
doi: 10.1039/D1DT00722J
Salke, N. P. et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett. 126, 65702 (2021).
doi: 10.1103/PhysRevLett.126.065702
Wang, Y. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022).
pubmed: 35449217 doi: 10.1038/s41557-022-00925-0
Laniel, D. et al. Aromatic hexazine [N
pubmed: 36879075 doi: 10.1038/s41557-023-01148-7
Aslandukov, A. et al. Anionic N
doi: 10.1002/anie.202207469
Bykov, M. et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun. 9, 2756 (2018).
pubmed: 30013071 pmcid: 6048061 doi: 10.1038/s41467-018-05143-2
Bykov, M. et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN
doi: 10.1002/anie.201805152
Bykov, M. et al. High-pressure synthesis of metal–inorganic frameworks Hf
doi: 10.1002/anie.202002487
Bykov, M. et al. Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure. Angew. Chemie 133, 9085–9090 (2021).
doi: 10.1002/ange.202100283
Laniel, D. et al. High-pressure synthesis of the β-Zn
pubmed: 34520208 doi: 10.1021/acs.inorgchem.1c01532
Bykov, M. et al. High-pressure synthesis of dirac materials: layered van der Waals bonded BeN
pubmed: 33988447 doi: 10.1103/PhysRevLett.126.175501
Zhang, C., Sun, C., Hu, B., Yu, C. & Lu, M. Synthesis and characterization of the pentazolate anion cyclo-N
pubmed: 28126812 doi: 10.1126/science.aah3840
Xu, Y. et al. A series of energetic metal pentazolate hydrates. Nature 549, 78–81 (2017).
pubmed: 28847006 doi: 10.1038/nature23662
Zhang, C. et al. A symmetric Co(N
doi: 10.1002/anie.201701070
Jiao, F., Zhang, C. & Xie, W. Energy density of high-pressure nitrogen-rich MNxcompounds. Phys. Chem. Chem. Phys. 23, 7313–7320 (2021).
pubmed: 33876091 doi: 10.1039/D1CP00527H
Berkok, H., Tebboune, A. & Belkaid, M. N. Structural properties and new phase transitions of ScN using FP-LMTO method. Phys. B Condens. Matter 406, 3836–3840 (2011).
doi: 10.1016/j.physb.2011.07.006
Aslam, M. A. & Ding, Z. J. Prediction of Thermodynamically Stable Compounds of the Sc-N System under High Pressure. ACS Omega 3, 11477–11485 (2018).
pubmed: 31459249 pmcid: 6645223 doi: 10.1021/acsomega.8b01602
Lin, J. et al. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions. Phys. Chem. Chem. Phys. 23, 6863–6870 (2021).
pubmed: 33725057 doi: 10.1039/D0CP05402J
Wei, S. et al. A novel high-pressure phase of ScN
doi: 10.1088/1361-648X/ac2119
Guo, Y. et al. Polymerization of nitrogen in two theoretically predicted high-energy compounds ScN
doi: 10.1088/1367-2630/ac8443
Alkhaldi, H. & Kroll, P. Chemical potential of nitrogen at high pressure and high temperature: application to nitrogen and nitrogen-rich phase diagram calculations. J. Phys. Chem. C 123, 7054–7060 (2019).
doi: 10.1021/acs.jpcc.9b00476
Rahm, M., Cammi, R., Ashcroft, N. W. & Hoffmann, R. Squeezing all elements in the periodic table: electron configuration and electronegativity of the atoms under compression. J. Am. Chem. Soc. 141, 10253–10271 (2019).
pubmed: 31144505 doi: 10.1021/jacs.9b02634
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
doi: 10.1016/0927-0256(96)00008-0
Hulliger, F. Chapter 33 rare earth pnictides. Handb. Phys. Chem. Rare Earths 4, 153–236 (1979).
doi: 10.1016/S0168-1273(79)04006-X
Shatruk, M. Synthesis of phosphides. ACS Symp. Ser. 1333, 103–134 (2019).
doi: 10.1021/bk-2019-1333.ch006
Prewitt, C. T. & Downs, R. T. High-pressure crystal chemistry. Rev. Mineral. 37, 283–318 (1998).
O’Sullivan, O. T. & Zdilla, M. J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 120, 5682–5744 (2020).
pubmed: 32543838 doi: 10.1021/acs.chemrev.9b00804
Politzer, P. & Murray, J. S. The Kamlet‐Jacobs parameter φ: a measure of intrinsic detonation potential. Propellants Explos. Pyrotech. 44, 844–849 (2019).
doi: 10.1002/prep.201900002
Zhang, J., Oganov, A. R., Li, X. & Niu, H. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B 95, 1–5 (2017).
Kantor, I. et al. BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 83, 125102 (2012).
pubmed: 23278021 doi: 10.1063/1.4768541
Boehler, R. New diamond cell for single-crystal x-ray diffraction. Rev. Sci. Instrum. 77, 2004–2007 (2006).
doi: 10.1063/1.2372734
Kurnosov, A. et al. A novel gas-loading system for mechanically closing of various types of diamond anvil cells. Rev. Sci. Instrum. 79, 045110 (2008).
pubmed: 18447555 doi: 10.1063/1.2902506
Fedotenko, T. et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies. Rev. Sci. Instrum. 90, 104501 (2019).
doi: 10.1063/1.5117786
Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).
doi: 10.1063/1.2335683
Anzellini, S., Dewaele, A., Occelli, F., Loubeyre, P. & Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. J. Appl. Phys. 115, 043511 (2014).
doi: 10.1063/1.4863300
Rigaku Oxford Diffraction, CrysAlisPro Software system (2015).
Aslandukov, A., Aslandukov, M., Dubrovinskaia, N. & Dubrovinsky, L. Domain auto finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samples. J. Appl. Crystallogr. 55, 1383–1391 (2022).
pubmed: 36249501 pmcid: 9533752 doi: 10.1107/S1600576722008081
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
doi: 10.1107/S0021889808042726
Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 71, 3–8 (2015).
doi: 10.1107/S2053273314026370
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71, 3–8 (2015).
doi: 10.1107/S2053229614024218
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
doi: 10.1107/S0021889811038970
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
doi: 10.1103/PhysRevB.59.1758
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328 doi: 10.1103/PhysRevLett.77.3865
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
doi: 10.1016/j.scriptamat.2015.07.021

Auteurs

Andrey Aslandukov (A)

Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany. andrii.aslandukov@uni-bayreuth.de.
Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany. andrii.aslandukov@uni-bayreuth.de.

Alena Aslandukova (A)

Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany.

Dominique Laniel (D)

Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, United Kingdom.

Saiana Khandarkhaeva (S)

Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany.

Yuqing Yin (Y)

Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany.
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.

Fariia I Akbar (FI)

Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany.

Stella Chariton (S)

Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA.

Vitali Prakapenka (V)

Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA.

Eleanor Lawrence Bright (EL)

European Synchrotron Radiation Facility, 38000, Grenoble, France.

Carlotta Giacobbe (C)

European Synchrotron Radiation Facility, 38000, Grenoble, France.

Jonathan Wright (J)

European Synchrotron Radiation Facility, 38000, Grenoble, France.

Davide Comboni (D)

European Synchrotron Radiation Facility, 38000, Grenoble, France.

Michael Hanfland (M)

European Synchrotron Radiation Facility, 38000, Grenoble, France.

Natalia Dubrovinskaia (N)

Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany.
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.

Leonid Dubrovinsky (L)

Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany.

Classifications MeSH