Stabilization of N
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
12 Mar 2024
12 Mar 2024
Historique:
received:
23
11
2023
accepted:
14
02
2024
medline:
13
3
2024
pubmed:
13
3
2024
entrez:
13
3
2024
Statut:
epublish
Résumé
Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc
Identifiants
pubmed: 38472167
doi: 10.1038/s41467-024-46313-9
pii: 10.1038/s41467-024-46313-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2244Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DU 954-11/1
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : DU 393-13/1
Informations de copyright
© 2024. The Author(s).
Références
Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).
pubmed: 15235595
doi: 10.1038/nmat1146
Laniel, D. et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett. 124, 216001 (2020).
pubmed: 32530671
doi: 10.1103/PhysRevLett.124.216001
Laniel, D., Geneste, G., Weck, G., Mezouar, M. & Loubeyre, P. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett. 122, 66001 (2019).
doi: 10.1103/PhysRevLett.122.066001
Laniel, D., Weck, G., Gaiffe, G., Garbarino, G. & Loubeyre, P. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett. 9, 1600–1604 (2018).
pubmed: 29533665
doi: 10.1021/acs.jpclett.8b00540
Bykov, M. et al. Dinitrogen as a universal electron acceptor in solid-state chemistry: an example of uncommon metallic compounds Na
pubmed: 33000943
doi: 10.1021/acs.inorgchem.0c01863
Bhadram, V. S., Kim, D. Y. & Strobel, T. A. High-pressure synthesis and characterization of incompressible titanium pernitride. Chem. Mater. 28, 1616–1620 (2016).
doi: 10.1021/acs.chemmater.6b00042
Bykov, M. et al. High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re
pubmed: 31278267
pmcid: 6611777
doi: 10.1038/s41467-019-10995-3
Young, A. F. et al. Synthesis of novel transition metal nitrides IrN
pubmed: 16712167
doi: 10.1103/PhysRevLett.96.155501
Crowhurst, J. C. et al. Synthesis and characterization of the nitrides of platinum and iridium. Science. 311, 1275–1278 (2006).
pubmed: 16513980
doi: 10.1126/science.1121813
Laniel, D. et al. High-pressure Na
doi: 10.1103/PhysRevMaterials.6.023402
Aslandukov, A. et al. High-pressure yttrium nitride, Y
doi: 10.1021/acs.jpcc.1c06210
Schneider, S. B., Frankovsky, R. & Schnick, W. Synthesis of alkaline earth diazenides M
pubmed: 22235865
doi: 10.1021/ic2023677
Niwa, K. et al. High-pressure synthesis and phase stability of nickel pernitride. Eur. J. Inorg. Chem. 2019, 3753–3757 (2019).
doi: 10.1002/ejic.201900489
Chen, W., Tse, J. S. & Jiang, J. Z. Stability, elastic and electronic properties of palladium nitride. J. Phys. Condens. Matter 22, 015404 (2010).
pubmed: 21386226
doi: 10.1088/0953-8984/22/1/015404
Niwa, K., Yamamoto, T., Sasaki, T. & Hasegawa, M. High-pressure synthesis, crystal growth, and compression behavior of hexagonal CrN
doi: 10.1103/PhysRevMaterials.3.053601
Niwa, K. et al. Highly coordinated iron and cobalt nitrides synthesized at high pressures and high temperatures. Inorg. Chem. 56, 6410–6418 (2017).
pubmed: 28509545
doi: 10.1021/acs.inorgchem.7b00516
Wessel, M. & Dronskowski, R. Nature of N-N bonding within high-pressure noble-metal pernitrides and the prediction of lanthanum pernitride. J. Am. Chem. Soc. 132, 2421–2429 (2010).
pubmed: 20121239
doi: 10.1021/ja910570t
Niwa, K. et al. Discovery of the last remaining binary platinum-group pernitride RuN
pubmed: 25205266
doi: 10.1002/chem.201404165
Niwa, K. et al. High pressure synthesis of marcasite-type rhodium pernitride. Inorg. Chem. 53, 697–699 (2014).
pubmed: 24393052
doi: 10.1021/ic402885k
Laniel, D. et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun. 10, 4515 (2019).
pubmed: 31586062
pmcid: 6778147
doi: 10.1038/s41467-019-12530-w
Laniel, D., Weck, G. & Loubeyre, P. Direct reaction of nitrogen and lithium up to 75 GPa: synthesis of the Li
pubmed: 30137975
doi: 10.1021/acs.inorgchem.8b01325
Steele, B. A. et al. High-pressure synthesis of a pentazolate salt. Chem. Mater. 29, 735–741 (2017).
doi: 10.1021/acs.chemmater.6b04538
Bykov, M. et al. Stabilization of pentazolate anions in the high-pressure compounds Na
doi: 10.1039/D1DT00722J
Salke, N. P. et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett. 126, 65702 (2021).
doi: 10.1103/PhysRevLett.126.065702
Wang, Y. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022).
pubmed: 35449217
doi: 10.1038/s41557-022-00925-0
Laniel, D. et al. Aromatic hexazine [N
pubmed: 36879075
doi: 10.1038/s41557-023-01148-7
Aslandukov, A. et al. Anionic N
doi: 10.1002/anie.202207469
Bykov, M. et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun. 9, 2756 (2018).
pubmed: 30013071
pmcid: 6048061
doi: 10.1038/s41467-018-05143-2
Bykov, M. et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN
doi: 10.1002/anie.201805152
Bykov, M. et al. High-pressure synthesis of metal–inorganic frameworks Hf
doi: 10.1002/anie.202002487
Bykov, M. et al. Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure. Angew. Chemie 133, 9085–9090 (2021).
doi: 10.1002/ange.202100283
Laniel, D. et al. High-pressure synthesis of the β-Zn
pubmed: 34520208
doi: 10.1021/acs.inorgchem.1c01532
Bykov, M. et al. High-pressure synthesis of dirac materials: layered van der Waals bonded BeN
pubmed: 33988447
doi: 10.1103/PhysRevLett.126.175501
Zhang, C., Sun, C., Hu, B., Yu, C. & Lu, M. Synthesis and characterization of the pentazolate anion cyclo-N
pubmed: 28126812
doi: 10.1126/science.aah3840
Xu, Y. et al. A series of energetic metal pentazolate hydrates. Nature 549, 78–81 (2017).
pubmed: 28847006
doi: 10.1038/nature23662
Zhang, C. et al. A symmetric Co(N
doi: 10.1002/anie.201701070
Jiao, F., Zhang, C. & Xie, W. Energy density of high-pressure nitrogen-rich MNxcompounds. Phys. Chem. Chem. Phys. 23, 7313–7320 (2021).
pubmed: 33876091
doi: 10.1039/D1CP00527H
Berkok, H., Tebboune, A. & Belkaid, M. N. Structural properties and new phase transitions of ScN using FP-LMTO method. Phys. B Condens. Matter 406, 3836–3840 (2011).
doi: 10.1016/j.physb.2011.07.006
Aslam, M. A. & Ding, Z. J. Prediction of Thermodynamically Stable Compounds of the Sc-N System under High Pressure. ACS Omega 3, 11477–11485 (2018).
pubmed: 31459249
pmcid: 6645223
doi: 10.1021/acsomega.8b01602
Lin, J. et al. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions. Phys. Chem. Chem. Phys. 23, 6863–6870 (2021).
pubmed: 33725057
doi: 10.1039/D0CP05402J
Wei, S. et al. A novel high-pressure phase of ScN
doi: 10.1088/1361-648X/ac2119
Guo, Y. et al. Polymerization of nitrogen in two theoretically predicted high-energy compounds ScN
doi: 10.1088/1367-2630/ac8443
Alkhaldi, H. & Kroll, P. Chemical potential of nitrogen at high pressure and high temperature: application to nitrogen and nitrogen-rich phase diagram calculations. J. Phys. Chem. C 123, 7054–7060 (2019).
doi: 10.1021/acs.jpcc.9b00476
Rahm, M., Cammi, R., Ashcroft, N. W. & Hoffmann, R. Squeezing all elements in the periodic table: electron configuration and electronegativity of the atoms under compression. J. Am. Chem. Soc. 141, 10253–10271 (2019).
pubmed: 31144505
doi: 10.1021/jacs.9b02634
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
doi: 10.1016/0927-0256(96)00008-0
Hulliger, F. Chapter 33 rare earth pnictides. Handb. Phys. Chem. Rare Earths 4, 153–236 (1979).
doi: 10.1016/S0168-1273(79)04006-X
Shatruk, M. Synthesis of phosphides. ACS Symp. Ser. 1333, 103–134 (2019).
doi: 10.1021/bk-2019-1333.ch006
Prewitt, C. T. & Downs, R. T. High-pressure crystal chemistry. Rev. Mineral. 37, 283–318 (1998).
O’Sullivan, O. T. & Zdilla, M. J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 120, 5682–5744 (2020).
pubmed: 32543838
doi: 10.1021/acs.chemrev.9b00804
Politzer, P. & Murray, J. S. The Kamlet‐Jacobs parameter φ: a measure of intrinsic detonation potential. Propellants Explos. Pyrotech. 44, 844–849 (2019).
doi: 10.1002/prep.201900002
Zhang, J., Oganov, A. R., Li, X. & Niu, H. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B 95, 1–5 (2017).
Kantor, I. et al. BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 83, 125102 (2012).
pubmed: 23278021
doi: 10.1063/1.4768541
Boehler, R. New diamond cell for single-crystal x-ray diffraction. Rev. Sci. Instrum. 77, 2004–2007 (2006).
doi: 10.1063/1.2372734
Kurnosov, A. et al. A novel gas-loading system for mechanically closing of various types of diamond anvil cells. Rev. Sci. Instrum. 79, 045110 (2008).
pubmed: 18447555
doi: 10.1063/1.2902506
Fedotenko, T. et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies. Rev. Sci. Instrum. 90, 104501 (2019).
doi: 10.1063/1.5117786
Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).
doi: 10.1063/1.2335683
Anzellini, S., Dewaele, A., Occelli, F., Loubeyre, P. & Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. J. Appl. Phys. 115, 043511 (2014).
doi: 10.1063/1.4863300
Rigaku Oxford Diffraction, CrysAlisPro Software system (2015).
Aslandukov, A., Aslandukov, M., Dubrovinskaia, N. & Dubrovinsky, L. Domain auto finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samples. J. Appl. Crystallogr. 55, 1383–1391 (2022).
pubmed: 36249501
pmcid: 9533752
doi: 10.1107/S1600576722008081
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
doi: 10.1107/S0021889808042726
Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 71, 3–8 (2015).
doi: 10.1107/S2053273314026370
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71, 3–8 (2015).
doi: 10.1107/S2053229614024218
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
doi: 10.1107/S0021889811038970
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
doi: 10.1103/PhysRevB.59.1758
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328
doi: 10.1103/PhysRevLett.77.3865
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
doi: 10.1016/j.scriptamat.2015.07.021