Enhanced attenuation of chikungunya vaccines expressing antiviral cytokines.


Journal

NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863

Informations de publication

Date de publication:
12 Mar 2024
Historique:
received: 03 01 2023
accepted: 21 02 2024
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: epublish

Résumé

Alphaviruses are vector-borne, medically relevant, positive-stranded RNA viruses that cause disease in animals and humans worldwide. Of this group, chikungunya virus (CHIKV) is the most significant human pathogen, responsible for generating millions of infections leading to severe febrile illness and debilitating chronic joint pain. Currently, there are limited treatments to protect against alphavirus disease; thus, there is a tremendous need to generate safe and effective vaccines. Live-attenuated vaccines (LAVs) are cost-effective and potent immunization strategies capable of generating long-term protection in a single dose. However, LAVs often produce systemic viral replication, which can lead to unwanted post-vaccination side effects and pose a risk of reversion to a pathogenic phenotype and transmission to mosquitoes. Here, we utilized a chimeric infectious clone of CHIKV engineered with the domain C of the E2 gene of Semliki Forest virus (SFV) to express IFNγ and IL-21-two potent antiviral and immunomodulatory cytokines-in order to improve the LAV's attenuation while maintaining immunogenicity. The IFNγ- and IL-21-expressing vaccine candidates were stable during passage and significantly attenuated post-vaccination, as mice experienced reduced footpad swelling with minimal systemic replication and dissemination capacity compared to the parental vaccine. Additionally, these candidates provided complete protection to mice challenged with WT CHIKV. Our dual attenuation strategy represents an innovative way to generate safe and effective alphavirus vaccines that could be applied to other viruses.

Identifiants

pubmed: 38472211
doi: 10.1038/s41541-024-00843-x
pii: 10.1038/s41541-024-00843-x
doi:

Types de publication

Journal Article

Langues

eng

Pagination

59

Informations de copyright

© 2024. The Author(s).

Références

Levi, L. I. & Vignuzzi, M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 7, 133 (2019).
pubmed: 31091828 pmcid: 6560413 doi: 10.3390/microorganisms7050133
Organization, W. H. Chikungunya Fact Sheet, (2021).
PAHO. (World Health Organization, Pan American Health Organization, 2015).
Chikungunya Cases by Country or Territory. (2023).
Shocket, M. S., Ryan, S. J. & Mordecai, E. A. Temperature explains broad patterns of Ross River virus transmission. Elife 7, e37762 (2018).
pubmed: 30152328 pmcid: 6112853 doi: 10.7554/eLife.37762
Murphy, A. K. et al. Spatial and temporal patterns of Ross River virus in south east Queensland, Australia: identification of hot spots at the rural-urban interface. BMC Infect. Dis. 20, 722 (2020).
pubmed: 33008314 pmcid: 7530966 doi: 10.1186/s12879-020-05411-x
Serra, O. P., Cardoso, B. F., Ribeiro, A. L., Santos, F. A. & Slhessarenko, R. D. Mayaro virus and dengue virus 1 and 4 natural infection in culicids from Cuiaba, state of Mato Grosso, Brazil. Mem. Inst. Oswaldo Cruz 111, 20–29 (2016).
pubmed: 26784852 pmcid: 4727432 doi: 10.1590/0074-02760150270
Vieira, C. J. et al. Detection of Mayaro virus infections during a dengue outbreak in Mato Grosso, Brazil. Acta Trop. 147, 12–16 (2015).
pubmed: 25817238 doi: 10.1016/j.actatropica.2015.03.020
Caicedo, E. Y. et al. Correction: The epidemiology of Mayaro virus in the Americas: A systematic review and key parameter estimates for outbreak modelling. PLoS Negl. Trop. Dis. 17, e0011034 (2023).
pubmed: 36598917 pmcid: 9812301 doi: 10.1371/journal.pntd.0011034
Larrieu, S. et al. Factors associated with persistence of arthralgia among Chikungunya virus-infected travellers: report of 42 French cases. J. Clin. Virol. 47, 85–88 (2010).
pubmed: 20004145 doi: 10.1016/j.jcv.2009.11.014
Borgherini, G. et al. Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on reunion island. Clin. Infect. Dis. 47, 469–475 (2008).
pubmed: 18611153 doi: 10.1086/590003
Soumahoro, M. K. et al. Impact of Chikungunya virus infection on health status and quality of life: a retrospective cohort study. PLoS One 4, e7800 (2009).
pubmed: 19911058 pmcid: 2771894 doi: 10.1371/journal.pone.0007800
Sissoko, D. et al. Post-epidemic Chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLoS Negl. Trop. Dis. 3, e389 (2009).
pubmed: 19274071 pmcid: 2647734 doi: 10.1371/journal.pntd.0000389
Couturier, E. et al. Impaired quality of life after chikungunya virus infection: a 2-year follow-up study. Rheumatol. (Oxf.) 51, 1315–1322 (2012).
doi: 10.1093/rheumatology/kes015
Soumahoro, M. K. et al. The Chikungunya epidemic on La Reunion Island in 2005-2006: a cost-of-illness study. PLoS Negl. Trop. Dis. 5, e1197 (2011).
pubmed: 21695162 pmcid: 3114750 doi: 10.1371/journal.pntd.0001197
Alvis-Zakzuk, N. J. et al. Economic Costs of Chikungunya Virus in Colombia. Value Health Reg. Issues 17, 32–37 (2018).
pubmed: 29627722 doi: 10.1016/j.vhri.2018.01.004
Staikowsky, F. et al. Retrospective survey of Chikungunya disease in Reunion Island hospital staff. Epidemiol. Infect. 136, 196–206 (2008).
pubmed: 17433130 doi: 10.1017/S0950268807008424
Harrison, V. R., Eckels, K. H., Bartelloni, P. J. & Hampton, C. Production and Evaluation of a Formalin-Killed CHIKV vaccine. J. Immunol. 107, 643–647 (1971).
pubmed: 4999088 doi: 10.4049/jimmunol.107.3.643
Metz, S. W. & Pijlman, G. P. Production of Chikungunya Virus-Like Particles and Subunit Vaccines in Insect Cells. Methods Mol. Biol. 1426, 297–309 (2016).
pubmed: 27233282 doi: 10.1007/978-1-4939-3618-2_27
Khan, M., Dhanwani, R., Rao, P. V. & Parida, M. Subunit vaccine formulations based on recombinant envelope proteins of Chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice. Virus Res. 167, 236–246 (2012).
pubmed: 22610133 doi: 10.1016/j.virusres.2012.05.004
Chang, L. J. et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 384, 2046–2052 (2014).
pubmed: 25132507 doi: 10.1016/S0140-6736(14)61185-5
Chen, G. L. et al. Effect of a Chikungunya Virus-Like Particle Vaccine on Safety and Tolerability Outcomes: A Randomized Clinical Trial. JAMA 323, 1369–1377 (2020).
pubmed: 32286643 pmcid: 7156994 doi: 10.1001/jama.2020.2477
Ramsauer, K. et al. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect. Dis. 15, 519–527 (2015).
pubmed: 25739878 doi: 10.1016/S1473-3099(15)70043-5
Folegatti, P. M. et al. A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nat. Commun. 12, 4636 (2021).
pubmed: 34330906 pmcid: 8324904 doi: 10.1038/s41467-021-24906-y
August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat. Med. 27, 2224–2233 (2021).
pubmed: 34887572 pmcid: 8674127 doi: 10.1038/s41591-021-01573-6
Norrby, E. Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J. Exp. Med. 204, 2779–2784 (2007).
pubmed: 18039952 pmcid: 2118520 doi: 10.1084/jem.20072290
Matrajt, L., Britton, T., Halloran, M. E. & Longini, I. M. Jr One versus two doses: What is the best use of vaccine in an influenza pandemic? Epidemics 13, 17–27 (2015).
pubmed: 26616038 pmcid: 4664891 doi: 10.1016/j.epidem.2015.06.001
Barnabas, R. V. & Wald, A. A Public Health COVID-19 Vaccination Strategy to Maximize the Health Gains for Every Single Vaccine Dose. Ann. Intern. Med. 174, 552–553 (2021).
pubmed: 33395339 doi: 10.7326/M20-8060
Burger, E. A., Campos, N. G., Sy, S., Regan, C. & Kim, J. J. Health and economic benefits of single-dose HPV vaccination in a Gavi-eligible country. Vaccine 36, 4823–4829 (2018).
pubmed: 29807710 pmcid: 6066173 doi: 10.1016/j.vaccine.2018.04.061
Levitt, N. H. et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4, 157–162 (1986).
pubmed: 3020820 doi: 10.1016/0264-410X(86)90003-4
Gorchakov, R. et al. Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J. Virol. 86, 6084–6096 (2012).
pubmed: 22457519 pmcid: 3372191 doi: 10.1128/JVI.06449-11
Ly H. Ixchiq (VLA1553): The first FDA-approved vaccine to prevent disease caused by Chikungunya virus infection. Virulence. 15, 2301573 (2024)
Hallengard, D. et al. Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J. Virol. 88, 2858–2866 (2014).
pubmed: 24371047 pmcid: 3958085 doi: 10.1128/JVI.03453-13
Roques, P. et al. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight 2, e83527 (2017).
pubmed: 28352649 pmcid: 5358498 doi: 10.1172/jci.insight.83527
Wressnigg, N. et al. Single-shot live-attenuated chikungunya vaccine in healthy adults: a phase 1, randomised controlled trial. Lancet Infect. Dis. 20, 1193–1203 (2020).
pubmed: 32497524 doi: 10.1016/S1473-3099(20)30238-3
Valneva. (ed Valneva Austria GmbH) (2021).
McMahon, R. et al. A randomized, double-blinded phase 3 study to demonstrate lot-to-lot consistency and to confirm immunogenicity and safety of the live-attenuated chikungunya virus vaccine candidate VLA1553 in healthy adults. J. Travel Med. 13, taad156 (2023).
Weger-Lucarelli, J., Aliota, M. T., Kamlangdee, A. & Osorio, J. E. Identifying the Role of E2 Domains on Alphavirus Neutralization and Protective Immune Responses. PLoS Negl. Trop. Dis. 9, e0004163 (2015).
pubmed: 26473963 pmcid: 4608762 doi: 10.1371/journal.pntd.0004163
Weger-Lucarelli, J. et al. Dissecting the Role of E2 Protein Domains in Alphavirus Pathogenicity. J. Virol. 90, 2418–2433 (2015).
pubmed: 26676771 doi: 10.1128/JVI.02792-15
Capitini, C. M., Fry, T. J. & Mackall, C. L. Cytokines as Adjuvants for Vaccine and Cellular Therapies for Cancer. Am. J. Immunol. 5, 65–83 (2009).
pubmed: 20182648 pmcid: 2826803 doi: 10.3844/ajisp.2009.65.83
Pennslyvania, U. o. PENNVAX-B With or Without IL-12 or IL-15 as a DNA Vaccine for HIV Infection. (2016).
NIAID. Safety of and Immune Response to an HIV Preventive Vaccine (HIV-1 Gag DNA Alone or With IL-15 DNA) Given With or Without Different Booster Vaccinations in HIV Uninfected Adults. (2021).
Chen, T. et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer 9, e001647 (2021).
pubmed: 33504576 pmcid: 7843316 doi: 10.1136/jitc-2020-001647
Li, M. Safety of Recombinant Human IL-21 Oncolytic Vaccinia Virus Injection (hV01) in Advanced Tumors. (2023).
Nordisk, N. Efficacy Study of IL-21 to Treat Metastatic Melanoma. (2004).
Squibb, B. M. (2015).
Clinic, M. Interferon-gamma or Aldesleukin and Vaccine Therapy in Treating Patients with Multiple Myeloma. (2011).
Inc, B. IMLYGIC, https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic . (2021).
Gherardi, M. M. et al. IL-12 Delivery from Recombinant Vaccinia Virus Attenuates the Vector and Enhances the Cellular Immune Response Against HIV-1 Env in a Dose-Dependent Manner. J. Immunol. 162, 6724–6733 (1999).
pubmed: 10352291 doi: 10.4049/jimmunol.162.11.6724
Abaitua, F., Rodriguez, J. R., Garzon, A., Rodriguez, D. & Esteban, M. Improving recombinant MVA immune responses: potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma. Virus Res. 116, 11–20 (2006).
pubmed: 16214252 doi: 10.1016/j.virusres.2005.08.008
Jarasch, N. et al. Interferon-gamma-induced activation of nitric oxide-mediated antiviral activity of macrophages caused by a recombinant coxsackievirus B3. Viral Immunol. 18, 355–364 (2005).
pubmed: 16035947 doi: 10.1089/vim.2005.18.355
Spolski, R. & Leonard, W. J. Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13, 379–395 (2014).
pubmed: 24751819 doi: 10.1038/nrd4296
Lee, A. J. & Ashkar, A. A. The Dual Nature of Type I and Type II Interferons. Front Immunol. 9, 2061 (2018).
pubmed: 30254639 pmcid: 6141705 doi: 10.3389/fimmu.2018.02061
Gardner, J. et al. Chikungunya virus arthritis in adult wild-type mice. J. Virol. 84, 8021–8032 (2010).
pubmed: 20519386 pmcid: 2916516 doi: 10.1128/JVI.02603-09
Morrison, T. E. et al. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am. J. Pathol. 178, 32–40 (2011).
pubmed: 21224040 pmcid: 3069999 doi: 10.1016/j.ajpath.2010.11.018
Lentscher, A. J. et al. Chikungunya virus replication in skeletal muscle cells is required for disease development. J. Clin. Invest. 130, 1466–1478 (2020).
pubmed: 31794434 pmcid: 7269570 doi: 10.1172/JCI129893
Hong, J. P., McCarthy, M. K., Davenport, B. J., Morrison, T. E. & Diamond, M. S. Clearance of Chikungunya Virus Infection in Lymphoid Tissues Is Promoted by Treatment with an Agonistic Anti-CD137 Antibody. J. Virol. 93, e01231–19 (2019).
pubmed: 31578287 pmcid: 6880159 doi: 10.1128/JVI.01231-19
Zhang, R. et al. Expression of the Mxra8 Receptor Promotes Alphavirus Infection and Pathogenesis in Mice and Drosophila. Cell Rep. 28, 2647–2658 e2645 (2019).
pubmed: 31484075 pmcid: 6745702 doi: 10.1016/j.celrep.2019.07.105
Raghavendhar, B. S. et al. Virus load and clinical features during the acute phase of Chikungunya infection in children. PLoS One 14, e0211036 (2019).
doi: 10.1371/journal.pone.0211036
Chan, Y. H., Lum, F. M. & Ng, L. F. P. Limitations of Current in Vivo Mouse Models for the Study of Chikungunya Virus Pathogenesis. Med. Sci. (Basel) 3, 64–77 (2015).
pubmed: 29083392
Das, T. et al. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog. Neurobiol. 91, 121–129 (2010).
pubmed: 20026374 doi: 10.1016/j.pneurobio.2009.12.006
Tandale, B. V. et al. Systemic involvements and fatalities during Chikungunya epidemic in India, 2006. J. Clin. Virol. 46, 145–149 (2009).
pubmed: 19640780 doi: 10.1016/j.jcv.2009.06.027
Webb, L. G. et al. Chikungunya virus antagonizes cGAS-STING mediated type-I interferon responses by degrading cGAS. PLoS Pathog. 16, e1008999 (2020).
pubmed: 33057424 pmcid: 7591055 doi: 10.1371/journal.ppat.1008999
Lazear, H. M. et al. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 19, 720–730 (2016).
pubmed: 27066744 pmcid: 4866885 doi: 10.1016/j.chom.2016.03.010
Chuong, C. et al. Nutritional status impacts dengue virus infection in mice. BMC Biol. 18, 106 (2020).
pubmed: 32854687 pmcid: 7453574 doi: 10.1186/s12915-020-00828-x
Bates, T. et al. Development and characterization of infectious clones of two strains of Usutu virus. Biorviv 554, 28–36 (2020).
Quiroz, J. A. et al. Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathog. 15, e1008061 (2019).
pubmed: 31697791 pmcid: 6837291 doi: 10.1371/journal.ppat.1008061
Powell, L. A. et al. Human mAbs Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of the Mxra8 Receptor-Binding Site. Cell Host Microbe 28, 699-711 e697 (2020).
Weger-Lucarelli, J. et al. Host nutritional status affects alphavirus virulence, transmission, and evolution. PLoS Pathog. 15, e1008089 (2019).
pubmed: 31710653 pmcid: 6872174 doi: 10.1371/journal.ppat.1008089
Couderc, T. et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29 (2008).
pubmed: 18282093 pmcid: 2242832 doi: 10.1371/journal.ppat.0040029
Rafael, K. C. et al. Adenoviral-Vectored Mayaro and Chikungunya Virus Vaccine Candidates Afford Partial Cross-Protection From Lethal Challenge in A129 Mouse Model. Front Immunol. 11, 591885 (2020).
doi: 10.3389/fimmu.2020.591885
Taylor, M. & Rayner, J. O. Immune Response to Chikungunya Virus: Sex as a Biological Variable and Implications for Natural Delivery via the Mosquito. Viruses 15, 1869 (2023).
pubmed: 37766276 pmcid: 10538149 doi: 10.3390/v15091869
Delgado-Enciso, I. et al. Smoking and female sex as key risk factors associated with severe arthralgia in acute and chronic phases of Chikungunya virus infection. Exp. Ther. Med. 15, 2634–2642 (2018).
pubmed: 29467856
Haileamlak, A. Pandemics Will be More Frequent. Ethiop. J. Health Sci. 32, 228 (2022).
pubmed: 35693574 pmcid: 9175207
Yang, C. F. et al. Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993. J. Virol. 77, 8366–8377 (2003).
pubmed: 12857906 pmcid: 165252 doi: 10.1128/JVI.77.15.8366-8377.2003
Pedersen, C. E. Jr, Robinson, D. M. & Cole, F. E. Jr Isolation of the vaccine strain of Venezuelan equine encephalomyelitis virus from mosquitoes in Louisiana. Am. J. Epidemiol. 95, 490–496 (1972).
pubmed: 4401801 doi: 10.1093/oxfordjournals.aje.a121416
Zhou, F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev. Immunol. 28, 239–260 (2009).
pubmed: 19811323 doi: 10.1080/08830180902978120
Whitmire, J. K., Tan, J. T. & Whitton, J. L. Interferon-gamma acts directly on CD8+ T cells to increase their abundance during virus infection. J. Exp. Med 201, 1053–1059 (2005).
pubmed: 15809350 pmcid: 2213135 doi: 10.1084/jem.20041463
Frucht, D. M. et al. IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 22, 556–560 (2001).
pubmed: 11574279 doi: 10.1016/S1471-4906(01)02005-1
Gessani, S. & Belardelli, F. IFN-gamma expression in macrophages and its possible biological significance. Cytokine Growth Factor Rev. 9, 117–123 (1998).
pubmed: 9754706 doi: 10.1016/S1359-6101(98)00007-0
Terajima, M. & Leporati, A. M. Role of Indoleamine 2,3-Dioxygenase in Antiviral Activity of Interferon-gamma Against Vaccinia Virus. Viral Immunol. 18, 722–729 (2005).
pubmed: 16359238 doi: 10.1089/vim.2005.18.722
Holechek, S. A. et al. Use of a recombinant vaccinia virus expressing interferon gamma for post-exposure protection against vaccinia and ectromelia viruses. PLoS One 8, e77879 (2013).
pubmed: 24147092 pmcid: 3798613 doi: 10.1371/journal.pone.0077879
Craig, L., Slingluff, J. Evaluating the Safety and the Biological Effects of Intratumoral Interferon Gamma and a Peptide-Based Vaccine in Patients With Melanoma (Mel 51). (2012).
Partidos, C. D. et al. Probing the attenuation and protective efficacy of a candidate chikungunya virus vaccine in mice with compromised interferon (IFN) signaling. Vaccine 29, 3067–3073 (2011).
pubmed: 21300099 pmcid: 3081687 doi: 10.1016/j.vaccine.2011.01.076
Nazeri, S., Zakeri, S., Mehrizi, A. A., Sardari, S. & Djadid, N. D. Measuring of IgG2c isotype instead of IgG2a in immunized C57BL/6 mice with Plasmodium vivax TRAP as a subunit vaccine candidate in order to correct interpretation of Th1 versus Th2 immune response. Exp. Parasitol. 216, 107944 (2020).
pubmed: 32619431 doi: 10.1016/j.exppara.2020.107944
Pallikkuth, S., Parmigiani, A. & Pahwa, S. Role of IL-21 and IL-21 receptor on B cells in HIV infection. Crit. Rev. Immunol. 32, 173–195 (2012).
pubmed: 23216614 pmcid: 3593056 doi: 10.1615/CritRevImmunol.v32.i2.50
Ettinger, R. et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol. 175, 7867–7879 (2005).
pubmed: 16339522 doi: 10.4049/jimmunol.175.12.7867
Ren, H. M. & Lukacher, A. E. IL-21 in Homeostasis of Resident Memory and Exhausted CD8 T Cells during Persistent Infection. Int J. Mol. Sci. 21, 6966 (2020).
pubmed: 32971931 pmcid: 7554897 doi: 10.3390/ijms21186966
Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).
pubmed: 12446913 doi: 10.1126/science.1077002
Ding, B. B., Bi, E., Chen, H., Yu, J. J. & Ye, B. H. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J. Immunol. 190, 1827–1836 (2013).
pubmed: 23325890 doi: 10.4049/jimmunol.1201678
Wurster, A. L. et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J. Exp. Med. 196, 969–977 (2002).
pubmed: 12370258 pmcid: 2194031 doi: 10.1084/jem.20020620
Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).
pubmed: 17581537 doi: 10.1038/ni1488
Fox, J. M. et al. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell 163, 1095–1107 (2015).
pubmed: 26553503 pmcid: 4659373 doi: 10.1016/j.cell.2015.10.050
McMahon, R. et al. Progress of clinical development of a live-attenuated single shot chikungunya vaccine candidate. (Valneva, 2022).
Tsetsarkin, K. A. et al. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc. Natl Acad. Sci. USA 108, 7872–7877 (2011).
pubmed: 21518887 pmcid: 3093459 doi: 10.1073/pnas.1018344108
Sheehan, K. C. et al. Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J. Interferon Cytokine Res. 26, 804–819 (2006).
pubmed: 17115899 doi: 10.1089/jir.2006.26.804

Auteurs

Christina Chuong (C)

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.
Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.

Chelsea N Cereghino (CN)

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.
Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.

Pallavi Rai (P)

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.
Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.

Tyler A Bates (TA)

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.

Megan Oberer (M)

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.

James Weger-Lucarelli (J)

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA. weger@vt.edu.
Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA. weger@vt.edu.

Classifications MeSH