The MITF/mir-579-3p regulatory axis dictates BRAF-mutated melanoma cell fate in response to MAPK inhibitors.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
12 Mar 2024
Historique:
received: 07 09 2023
accepted: 29 02 2024
revised: 27 02 2024
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: epublish

Résumé

Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.

Identifiants

pubmed: 38472212
doi: 10.1038/s41419-024-06580-2
pii: 10.1038/s41419-024-06580-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

208

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG19865
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG24451
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
ID : 2017HWTP2K
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
ID : 2017HWTP2K
Organisme : Ministero della Salute (Ministry of Health, Italy)
ID : Ricerca Corrente" grant L2/1
Organisme : Regione Lazio (Region of Lazio)
ID : 85-2017-13750
Organisme : Regione Lazio (Region of Lazio)
ID : A0375-2020-36657

Informations de copyright

© 2024. The Author(s).

Références

Robert C, Grob JJ, Stroyakovskiy D, Karaszewska B, Hauschild A, Levchenko E, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381:626–36. https://doi.org/10.1056/NEJMoa1904059
doi: 10.1056/NEJMoa1904059 pubmed: 31166680
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46. https://doi.org/10.1056/NEJMoa1910836
doi: 10.1056/NEJMoa1910836 pubmed: 31562797
Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93. https://doi.org/10.1158/2159-8290.CD-13-0642
doi: 10.1158/2159-8290.CD-13-0642 pubmed: 24265155
Hong A, Moriceau G, Sun L, Lomeli S, Piva M, Damoiseaux R, et al. Exploiting drug addiction mechanisms to select against MAPKi-resistant melanoma. Cancer Discov. 2018;8:74–93. https://doi.org/10.1158/2159-8290.CD-17-0682
doi: 10.1158/2159-8290.CD-17-0682 pubmed: 28923912
Moriceau G, Hugo W, Hong A, Shi H, Kong X, Yu CC, et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell. 2015;27:240–56. https://doi.org/10.1016/j.ccell.2014.11.018
doi: 10.1016/j.ccell.2014.11.018 pubmed: 25600339 pmcid: 4326539
Pisanu ME, Maugeri-Saccà M, Fattore L, Bruschini S, De Vitis C, Tabbì E, et al. Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma. J Exp Clin cancer Res: CR. 2018;37:318. https://doi.org/10.1186/s13046-018-0989-7
doi: 10.1186/s13046-018-0989-7 pubmed: 30558661 pmcid: 6298024
Dharanipragada P, Zhang X, Liu S, Lomeli SH, Hong A, Wang Y, et al. Blocking genomic instability prevents acquired resistance to MAPK Inhibitor therapy in melanoma. Cancer Discov. 2023;13:880–909. https://doi.org/10.1158/2159-8290.CD-22-0787
doi: 10.1158/2159-8290.CD-22-0787 pubmed: 36700848 pmcid: 10068459
Fattore L, Mancini R, Ciliberto G. Cancer Stem cells and the slow cycling phenotype: how to cut the gordian knot driving resistance to therapy in melanoma. Cancers (Basel). 2020;12:3368. https://doi.org/10.3390/cancers12113368
doi: 10.3390/cancers12113368 pubmed: 33202944
Fattore L, Ruggiero CF, Pisanu ME, Liguoro D, Cerri A, Costantini S, et al. Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ. 2019;26:1267–82. https://doi.org/10.1038/s41418-018-0205-5
doi: 10.1038/s41418-018-0205-5 pubmed: 30254376
Fattore L, Campani V, Ruggiero CF, Salvati V, Liguoro D, Scotti L, et al. In vitro biophysical and biological characterization of lipid nanoparticles co-encapsulating oncosuppressors miR-199b-5p and miR-204-5p as potentiators of target therapy in metastatic melanoma. Int J Mol Sci. 2020;21:1930. https://doi.org/10.3390/ijms21061930
Fattore L, Cafaro G, Di Martile M, Campani V, Sacconi A, Liguoro D, et al. Oncosuppressive miRNAs loaded in lipid nanoparticles potentiate targeted therapies in BRAF-mutant melanoma by inhibiting core escape pathways of resistance. Oncogene. 2023;42:293–307. https://doi.org/10.1038/s41388-022-02547-9
doi: 10.1038/s41388-022-02547-9 pubmed: 36418472
Castaldo V, Minopoli M, Di Modugno F, Sacconi A, Liguoro D, Frigerio R, et al. Upregulated expression of miR-4443 and miR-4488 in drug resistant melanomas promotes migratory and invasive phenotypes through downregulation of intermediate filament nestin. J Exp Clin Cancer Res. 2023;42:317. https://doi.org/10.1186/s13046-023-02878-9
doi: 10.1186/s13046-023-02878-9 pubmed: 38008717 pmcid: 10680267
Fattore L, Mancini R, Acunzo M, Romano G, Laganà A, Pisanu ME, et al. miR-579-3p controls melanoma progression and resistance to target therapy. Proc Natl Acad Sci USA. 2016;113:E5005–13. https://doi.org/10.1073/pnas.1607753113
doi: 10.1073/pnas.1607753113 pubmed: 27503895 pmcid: 5003278
Fattore L, Ruggiero CF, Liguoro D, Castaldo V, Catizone A, Ciliberto G, et al. The promise of liquid biopsy to predict response to immunotherapy in metastatic melanoma. Front Oncol. 2021;11:645069. https://doi.org/10.3389/fonc.2021.645069
doi: 10.3389/fonc.2021.645069 pubmed: 33816298 pmcid: 8013996
Ruggiero CF, Fattore L, Terrenato I, Sperati F, Salvati V, Madonna G, et al. Identification of a miRNA-based non-invasive predictive biomarker of response to target therapy in BRAF-mutant melanoma. Theranostics. 2022;12:7420–30. https://doi.org/10.7150/thno.77761
doi: 10.7150/thno.77761 pubmed: 36438490 pmcid: 9691363
Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33:983–1007. https://doi.org/10.1101/gad.324657.119
doi: 10.1101/gad.324657.119 pubmed: 31123060 pmcid: 6672050
Liguoro D, Fattore L, Mancini R, Ciliberto G. Drug tolerance to target therapy in melanoma revealed at single cell level: What next? Biochimica et Biophysica Acta Rev Cancer. 2020;1874:188440. https://doi.org/10.1016/j.bbcan.2020.188440
doi: 10.1016/j.bbcan.2020.188440
Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 2015;28:390–406. https://doi.org/10.1111/pcmr.12370
doi: 10.1111/pcmr.12370 pubmed: 25818589 pmcid: 4692100
Schepsky A, Bruser K, Gunnarsson GJ, Goodall J, Hallsson JH, Goding CR, et al. The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol Cell Biol. 2006;26:8914–27. https://doi.org/10.1128/MCB.02299-05
doi: 10.1128/MCB.02299-05 pubmed: 17000761 pmcid: 1636837
Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3:e2734. https://doi.org/10.1371/journal.pone.0002734
doi: 10.1371/journal.pone.0002734 pubmed: 18628967 pmcid: 2444043
Loria R, Laquintana V, Scalera S, Fraioli R, Caprara V, Falcone I, et al. SEMA6A/RhoA/YAP axis mediates tumor-stroma interactions and prevents response to dual BRAF/MEK inhibition in BRAF-mutant melanoma. J Exp Clin Cancer Res. 2022;41:148. https://doi.org/10.1186/s13046-022-02354-w
doi: 10.1186/s13046-022-02354-w pubmed: 35440004 pmcid: 9016967
Verduzco D, Kuenzi BM, Kinose F, Sondak VK, Eroglu Z, Rix U, et al. Ceritinib enhances the efficacy of trametinib in BRAF/NRAS-wild-type melanoma cell lines. Mol Cancer Ther. 2018;17:73–83. https://doi.org/10.1158/1535-7163.MCT-17-0196
doi: 10.1158/1535-7163.MCT-17-0196 pubmed: 29133622
von Euw E, Atefi M, Attar N, Chu C, Zachariah S, Burgess BL, et al. Antitumor effects of the investigational selective MEK inhibitor TAK733 against cutaneous and uveal melanoma cell lines. Mol Cancer. 2012;11:22. https://doi.org/10.1186/1476-4598-11-22
doi: 10.1186/1476-4598-11-22
Hinske LC, Galante PAF, Limbeck E, Möhnle P, Parmigiani RB, Ohno-Machado L, et al. Alternative polyadenylation allows differential negative feedback of human miRNA miR-579 on its host gene ZFR. PloS One. 2015;10:e0121507. https://doi.org/10.1371/journal.pone.0121507
doi: 10.1371/journal.pone.0121507 pubmed: 25799583 pmcid: 4370670
Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, Fisher DE. Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res. 2004;64:509–16. https://doi.org/10.1158/0008-5472.can-03-2440 .
doi: 10.1158/0008-5472.can-03-2440 pubmed: 14744763
Jayawardana K, Schramm SJ, Haydu L, Thompson JF, Scolyer RA, Mann GJ, et al. Determination of prognosis in metastatic melanoma through integration of clinico-pathologic, mutation, mRNA, microRNA, and protein information. Int J Cancer. 2015;136:863–74. https://doi.org/10.1002/ijc.29047
doi: 10.1002/ijc.29047 pubmed: 24975271
Haferkamp S, Borst A, Adam C, Becker TM, Motschenbacher S, Windhövel S, et al. Vemurafenib induces senescence features in melanoma cells. J Invest Dermatol. 2013;133:1601–9. https://doi.org/10.1038/jid.2013.6
doi: 10.1038/jid.2013.6 pubmed: 23321925
Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Sci (NY). 2016;352:189–96. https://doi.org/10.1126/science.aad0501
doi: 10.1126/science.aad0501
Müller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712. https://doi.org/10.1038/ncomms6712
doi: 10.1038/ncomms6712 pubmed: 25502142
Avogadri F, Gnjatic S, Tassello J, Frosina D, Hanson N, Laudenbach M, et al. Protein expression analysis of melanocyte differentiation antigen TRP-2. Am J Dermatopathol. 2016;38:201–7. https://doi.org/10.1097/DAD.0000000000000362
doi: 10.1097/DAD.0000000000000362 pubmed: 26894771 pmcid: 5844230
Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys. 2014;563:28–34. https://doi.org/10.1016/j.abb.2014.07.019
doi: 10.1016/j.abb.2014.07.019 pubmed: 25111671 pmcid: 4336945
Shtutman M, Chang BD, Schools GP, Broude EV. Cellular model of p21-induced senescence. Methods Mol Biol. 2017;1534:31–39. https://doi.org/10.1007/978-1-4939-6670-7_3
doi: 10.1007/978-1-4939-6670-7_3 pubmed: 27812865 pmcid: 6764449
Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22:340–55. https://doi.org/10.1038/s41568-022-00450-9
doi: 10.1038/s41568-022-00450-9 pubmed: 35241831
Smalley I, Kim E, Li J, Spence P, Wyatt CJ, Eroglu Z, et al. Leveraging transcriptional dynamics to improve BRAF inhibitor responses in melanoma. eBioMedicine. 2019;48:178–90. https://doi.org/10.1016/j.ebiom.2019.09.023
doi: 10.1016/j.ebiom.2019.09.023 pubmed: 31594749 pmcid: 6838387
Su Y, Ko ME, Cheng H, Zhu R, Xue M, Wang J, et al. Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat Commun. 2020;11:2345. https://doi.org/10.1038/s41467-020-15956-9
doi: 10.1038/s41467-020-15956-9 pubmed: 32393797 pmcid: 7214418
Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4:816–27. https://doi.org/10.1158/2159-8290.CD-13-0424
doi: 10.1158/2159-8290.CD-13-0424 pubmed: 24771846 pmcid: 4154497
Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J, Dewaele M, et al. Toward minimal residual disease-directed therapy in melanoma. Cell. 2018;174:843–55. https://doi.org/10.1016/j.cell.2018.06.025 .
doi: 10.1016/j.cell.2018.06.025 pubmed: 30017245
Ji Z, Erin Chen Y, Kumar R, Taylor M, Jenny Njauw CN, Miao B, et al. MITF modulates therapeutic resistance through EGFR signaling. J Invest Dermatol. 2015;135:1863–72. https://doi.org/10.1038/jid.2015.105
doi: 10.1038/jid.2015.105 pubmed: 25789707 pmcid: 4466007
Smith MP, Brunton H, Rowling EJ, Ferguson J, Arozarena I, Miskolczi Z, et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell. 2016;29:270–84. https://doi.org/10.1016/j.ccell.2016.02.003
doi: 10.1016/j.ccell.2016.02.003 pubmed: 26977879 pmcid: 4796027
Carotenuto P, Romano A, Barbato A, Quadrano P, Brillante S, Volpe M, et al. Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant melanoma. Cell Rep. 2022;41:111601. https://doi.org/10.1016/j.celrep.2022.111601
doi: 10.1016/j.celrep.2022.111601 pubmed: 36351409
Quintavalle C, Meyer-Schaller N, Roessler S, Calabrese D, Marone R, Riedl T, et al. miR-579-3p controls hepatocellular carcinoma formation by regulating the phosphoinositide 3-kinase-protein kinase b pathway in chronically inflamed liver. Hepatol Commun. 2022;6:1467–81. https://doi.org/10.1002/hep4.1894
doi: 10.1002/hep4.1894 pubmed: 35132819 pmcid: 9134798
Yi Q, Miao Y, Kong Y, Xu Y, Zhou J, Dong Q, et al. MiR-579 inhibits lung adenocarcinoma cell proliferation and metastasis via binding to CRABP2. Comput Math Methods Med. 2022;2022:9111681. https://doi.org/10.1155/2022/9111681
doi: 10.1155/2022/9111681 pubmed: 35966249 pmcid: 9371869
Long Y, Marian TA, Wei Z. ZFR promotes cell proliferation and tumor development in colorectal and liver cancers. Biochem Biophys Res Commun. 2019;513:1027–34. https://doi.org/10.1016/j.bbrc.2019.04.103
doi: 10.1016/j.bbrc.2019.04.103 pubmed: 31010678
Zhang H, Zhang CF, Chen R. Zinc finger RNA-binding protein promotes non-small-cell carcinoma growth and tumor metastasis by targeting the Notch signaling pathway. Am J Cancer Res. 2017;7:1804–19.
pubmed: 28979805 pmcid: 5622217
Liu L, Wang H, Yu S, Gao X, Liu G, Sun D, et al. An update on the roles of circRNA-ZFR in human malignant tumors. Front Cell Dev Biol. 2022;9:806181. https://doi.org/10.3389/fcell.2021.806181
doi: 10.3389/fcell.2021.806181 pubmed: 35186956 pmcid: 8848330
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5:ra42. https://doi.org/10.1126/scisignal.2002790
doi: 10.1126/scisignal.2002790 pubmed: 22692423 pmcid: 3437338
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–W514. https://doi.org/10.1093/nar/gkaa407
doi: 10.1093/nar/gkaa407 pubmed: 32442275 pmcid: 7319575
Bruschini S, di Martino S, Pisanu ME, Fattore L, De Vitis C, Laquintana V, et al. CytoMatrix for a reliable and simple characterization of lung cancer stem cells from malignant pleural effusions. J Cell Physiol. 2020;235:1877–87. https://doi.org/10.1002/jcp.29121
doi: 10.1002/jcp.29121 pubmed: 31397494
Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20:1965–77. https://doi.org/10.1158/1078-0432.CCR-13-3122
doi: 10.1158/1078-0432.CCR-13-3122
Kakavand H, Rawson RV, Pupo GM, Yang JYH, Menzies AM, Carlino MS, et al. PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res. 2017;23:6054 LP–6061. https://doi.org/10.1158/1078-0432.CCR-16-1688
doi: 10.1158/1078-0432.CCR-16-1688

Auteurs

Domenico Liguoro (D)

SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.

Rachele Frigerio (R)

Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy.

Arianna Ortolano (A)

Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.

Andrea Sacconi (A)

Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.

Mario Acunzo (M)

Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.

Giulia Romano (G)

Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.

Giovanni Nigita (G)

Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.

Barbara Bellei (B)

Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy.

Gabriele Madonna (G)

Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy.

Mariaelena Capone (M)

Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy.

Paolo Antonio Ascierto (PA)

Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy.

Rita Mancini (R)

Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.
Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy.

Gennaro Ciliberto (G)

Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy. gennaro.ciliberto@ifo.it.

Luigi Fattore (L)

SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.

Classifications MeSH