Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 Mar 2024
Historique:
received: 10 08 2023
accepted: 21 02 2024
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: epublish

Résumé

Circulating cell-free DNA (cfDNA) fragments have characteristics that are specific to the cell types that release them. Current methods for cfDNA deconvolution typically use disease tailored marker selection in a limited number of bulk tissues or cell lines. Here, we utilize single cell transcriptome data as a comprehensive cellular reference set for disease-agnostic cfDNA cell-of-origin analysis. We correlate cfDNA-inferred nucleosome spacing with gene expression to rank the relative contribution of over 490 cell types to plasma cfDNA. In 744 healthy individuals and patients, we uncover cell type signatures in support of emerging disease paradigms in oncology and prenatal care. We train predictive models that can differentiate patients with colorectal cancer (84.7%), early-stage breast cancer (90.1%), multiple myeloma (AUC 95.0%), and preeclampsia (88.3%) from matched controls. Importantly, our approach performs well in ultra-low coverage cfDNA datasets and can be readily transferred to diverse clinical settings for the expansion of liquid biopsy.

Identifiants

pubmed: 38472221
doi: 10.1038/s41467-024-46435-0
pii: 10.1038/s41467-024-46435-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2220

Informations de copyright

© 2024. The Author(s).

Références

Chan, A. K. C., Chiu, R. W. K. & Lo, Y. M. D., Clinical Sciences Reviews Committee of the Association of Clinical Biochemists. Cell-free nucleic acids in plasma, serum and urine: a new tool in molecular diagnosis. Ann. Clin. Biochem. 40, 122–130 (2003).
pubmed: 12662399 doi: 10.1258/000456303763046030
Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).
pubmed: 10458604 doi: 10.1016/S0092-8674(00)81958-3
Lo, Y. M. D. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91 (2010).
pubmed: 21148127 doi: 10.1126/scitranslmed.3001720
Lo, Y. M. D., Han, D. S. C., Jiang, P. & Chiu, R. W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 372, eaaw3616 (2021).
pubmed: 33833097 doi: 10.1126/science.aaw3616
Snyder, M. W. et al. comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).
pubmed: 26771485 pmcid: 4715266 doi: 10.1016/j.cell.2015.11.050
Ivanov, M., Baranova, A., Butler, T., Spellman, P. & Mileyko, V. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genom. 16, S1 (2015).
doi: 10.1186/1471-2164-16-S13-S1
Ulz, P. et al. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat. Commun. 10, 4666 (2019).
pubmed: 31604930 pmcid: 6789008 doi: 10.1038/s41467-019-12714-4
Esfahani, M. S. et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat. Biotechnol. 40, 585–597 (2022).
pubmed: 35361996 pmcid: 9337986 doi: 10.1038/s41587-022-01222-4
An, Y. et al. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat. Commun. 14, 287 (2023).
pubmed: 36653380 pmcid: 9849216 doi: 10.1038/s41467-023-35959-6
Lui, Y. Y. N. et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 48, 421–427 (2002).
pubmed: 11861434 doi: 10.1093/clinchem/48.3.421
Bu, L. et al. Clinical outcomes from the Assessing Donor-derived cell-free DNA Monitoring Insights of kidney Allografts with Longitudinal surveillance (ADMIRAL) study. Kidney Int. 101, 793–803 (2022).
pubmed: 34953773 doi: 10.1016/j.kint.2021.11.034
Gao, Q. et al. Circulating cell-free DNA for cancer early detection. Innovation 3, 100259 (2022).
pubmed: 35647572 pmcid: 9133648
Gielis, E. M. et al. The use of plasma donor-derived, cell-free DNA to monitor acute rejection after kidney transplantation. Nephrol. Dial. Transplant. 35, 714–721 (2020).
pubmed: 31106364 doi: 10.1093/ndt/gfz091
Che, H. et al. Machine learning-based detection of immune-mediated diseases from genome-wide cell-free DNA sequencing datasets. NPJ Genom. Med. 7, 55 (2022).
pubmed: 36100603 pmcid: 9470560 doi: 10.1038/s41525-022-00325-w
Han, D. et al. Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing. Theranostics 10, 5501–5513 (2020).
pubmed: 32373224 pmcid: 7196304 doi: 10.7150/thno.45554
Long, Y. et al. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients. Arch. Med. Res. 47, 365–371 (2016).
pubmed: 27751370 doi: 10.1016/j.arcmed.2016.08.004
Chang, C. P.-Y. et al. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin. Chim. Acta 327, 95–101 (2003).
pubmed: 12482623 doi: 10.1016/S0009-8981(02)00337-6
Falcione, S. R. & Jickling, G. C. Cell-free DNA in ischemic stroke. Stroke 53, 1245–1246 (2022).
pubmed: 34991337 doi: 10.1161/STROKEAHA.121.037525
Song, J. & Kuan, P.-F. A systematic assessment of cell type deconvolution algorithms for DNA methylation data. Brief. Bioinform. 23, bbac449 (2022).
pubmed: 36242584 doi: 10.1093/bib/bbac449
Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017).
pubmed: 28977446 pmcid: 5886462 doi: 10.1093/hmg/ddx275
Liu, Y. At the dawn: cell-free DNA fragmentomics and gene regulation. Br. J. Cancer 126, 379–390 (2022).
pubmed: 34815523 doi: 10.1038/s41416-021-01635-z
Consortium*, T. T. S. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science https://doi.org/10.1126/science.abl4896 (2022)
Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).
Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).
pubmed: 19092803 doi: 10.1038/nature07667
Moss, J. et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (2018).
pubmed: 30498206 pmcid: 6265251 doi: 10.1038/s41467-018-07466-6
Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023).
pubmed: 36599988 pmcid: 9811898 doi: 10.1038/s41586-022-05580-6
Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).
pubmed: 24048120 pmcid: 4045180 doi: 10.1038/ni.2705
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature. 563, 347–353 (2018).
Wu, Y. et al. Association between levels of total cell-free DNA and development of preeclampsia—a literature review. AJP Rep. 11, e38–e48 (2021).
pubmed: 33747613 pmcid: 7964254 doi: 10.1055/s-0040-1721674
Che, H. et al. Pan-cancer detection and typing by mining patterns in large genome-wide cell-free DNA sequencing datasets. Clin. Chem. 68, 1164–1176 (2022).
pubmed: 35769009 doi: 10.1093/clinchem/hvac095
Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).
Linde, N. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9, 21 (2018).
pubmed: 29295986 pmcid: 5750231 doi: 10.1038/s41467-017-02481-5
Doebley, A. L. et al. A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA. Nat. Commun. 13, 7475 (2022).
pubmed: 36463275 pmcid: 9719521 doi: 10.1038/s41467-022-35076-w
Ives, C. W., Sinkey, R., Rajapreyar, I., Tita, A. T. N. & Oparil, S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J. Am. Coll. Cardiol. 76, 1690–1702 (2020).
pubmed: 33004135 doi: 10.1016/j.jacc.2020.08.014
Moufarrej, M. N. et al. Early prediction of preeclampsia in pregnancy with cell-free RNA. Nature 602, 689–694 (2022).
pubmed: 35140405 pmcid: 8971130 doi: 10.1038/s41586-022-04410-z
Munchel, S. et al. Circulating transcripts in maternal blood reflect a molecular signature of early-onset preeclampsia. Sci. Transl. Med. 12, eaaz0131 (2020).
pubmed: 32611681 doi: 10.1126/scitranslmed.aaz0131
Curnow, K. J. et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism–based noninvasive prenatal test. Am. J. Obstet. Gynecol. 212, 79.e1–79.e9 (2015).
pubmed: 25447960 doi: 10.1016/j.ajog.2014.10.012
Futch, T. et al. Initial clinical laboratory experience in noninvasive prenatal testing for fetal aneuploidy from maternal plasma DNA samples. Prenat. Diagn. 33, 569–574 (2013).
pubmed: 23592485 pmcid: 3709117 doi: 10.1002/pd.4123
Zhou, X. et al. CRAG: de novo characterization of cell-free DNA fragmentation hotspots in plasma whole-genome sequencing. Genome Med. 14, 138 (2022).
pubmed: 36482487 pmcid: 9733064 doi: 10.1186/s13073-022-01141-8
Taklifi, P., Palizban, F. & Mehrmohamadi, M. Integrating chromatin accessibility states in the design of targeted sequencing panels for liquid biopsy. Sci. Rep. 12, 10447 (2022).
Moss, J. et al. Megakaryocyte- and erythroblast-specific cell-free DNA patterns in plasma and platelets reflect thrombopoiesis and erythropoiesis levels. Nat. Commun. 14, 7542 (2023).
Ibarra, A. et al. Non-invasive characterization of human bone marrow stimulation and reconstitution by cell-free messenger RNA sequencing. Nat. Commun. 11, 400 (2020).
pubmed: 31964864 pmcid: 6972916 doi: 10.1038/s41467-019-14253-4
Vogelstein, B. et al. The origin of highly elevated cell-free DNA in healthy individuals and patients with pancreatic, colorectal, lung, or ovarian cancer. Cancer Discov. 13, 10 (2023).
Dor, Y. et al. Remote immune processes revealed by immune-derived circulating cell-free DNA. eLife 10, e70520 (2021).
pubmed: 34842142 pmcid: 8651286 doi: 10.7554/eLife.70520
Toor, S. M. et al. Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients. Front. Immunol. 10, 2936 (2019).
pubmed: 31921188 pmcid: 6928042 doi: 10.3389/fimmu.2019.02936
Nobutani, K. et al. Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells Devoted Mol. Cell. Mech. 19, 141–152 (2014).
doi: 10.1111/gtc.12122
Higgins, M., Obaidi, I. & McMorrow, T. Primary cilia and their role in cancer. Oncol. Lett. 17, 3041–3047 (2019).
pubmed: 30867732 pmcid: 6396132
Lafuste, P. et al. Alpha-fetoprotein gene expression in early and full-term human trophoblast. Placenta 23, 600–612 (2002).
pubmed: 12361680 doi: 10.1053/plac.2002.0816
Waller, D. K., Lustig, L. S., Cunningham, G. C., Feuchtbaum, L. B. & Hook, E. B. The association between maternal serum alpha-fetoprotein and preterm birth, small for gestational age infants, preeclampsia, and placental complications. Obstet. Gynecol. 88, 816–822 (1996).
pubmed: 8885920 doi: 10.1016/0029-7844(96)00310-9
Terentiev, A. A. & Moldogazieva, N. T. Alpha-fetoprotein: a renaissance. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 34, 2075–2091 (2013).
doi: 10.1007/s13277-013-0904-y
Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019).
pubmed: 31142840 pmcid: 6774252 doi: 10.1038/s41586-019-1272-6
Hasenleithner, S. O. & Speicher, M. R. A clinician’s handbook for using ctDNA throughout the patient journey. Mol. Cancer 21, 81 (2022).
pubmed: 35307037 pmcid: 8935823 doi: 10.1186/s12943-022-01551-7

Auteurs

Kate E Stanley (KE)

Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.
Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.

Tatjana Jatsenko (T)

Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.

Stefania Tuveri (S)

Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.

Dhanya Sudhakaran (D)

Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.

Lore Lannoo (L)

Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium.

Kristel Van Calsteren (K)

Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium.

Marie de Borre (M)

Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, Leuven, Belgium.

Ilse Van Parijs (I)

Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.

Leen Van Coillie (L)

Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.

Kris Van Den Bogaert (K)

Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.

Rodrigo De Almeida Toledo (R)

Vall d'Hebron Institute of Oncology, Barcelona (VHIO), Spain.

Liesbeth Lenaerts (L)

Department of Oncology, Gynecological Oncology, KU Leuven, Leuven, Belgium.

Sabine Tejpar (S)

Department of Oncology, Molecular Digestive Oncology, KU Leuven, Leuven, Belgium.

Kevin Punie (K)

Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.

Laura Y Rengifo (LY)

Department of Human Genetics, Laboratory of Genetics of Malignant Diseases, KU Leuven, Leuven, Belgium.

Peter Vandenberghe (P)

Department of Human Genetics, Laboratory of Genetics of Malignant Diseases, KU Leuven, Leuven, Belgium.
Department of Hematology, University Hospitals Leuven, Leuven, Belgium.

Bernard Thienpont (B)

Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, Leuven, Belgium.

Joris Robert Vermeesch (JR)

Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium. joris.vermeesch@kuleuven.be.

Classifications MeSH